#innovacion #ayudascdti #asesoramiento #internacionalizacion

CPP 01/2021 AB (DCCPI/OCPI)

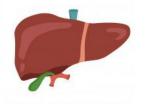
Dra. Elena Abellán Rubio Responsable Ud Microcirugía

Fundación Centro de Cirugía de Mínima Invasión Jesús Usón

Anexo I. Índice de contenidos

1. Requisitos funcionales

- Introducción
- Estado del arte
- Objetivos del reto tecnológico
- Áreas de actuación



1.1 Introducción

Proceso clave

Óptima preservación del órgano desde su extracción del donante hasta su implante en el receptor

- Escasez de órganos - Evaluación de la calidad del órgano

- Plazos de preservación cortos

1.2 Estado del arte

Soluciones actuales

- □Almacenamiento estático en frío (órgano sumergido)
 - Daño por isquemia-reperfusión
 - Falta de información para evaluar el órgano
 - Sólo válido para órganos óptimos
 - Tiempos de preservación limitados

- ☐ Preservación dinámica en frío (perfusión de la solución de preservación)
 - Escasas ventajas frente a almacenamiento estático
 - Aumento de complejidad y de costes
 - Escasa utilización
- ☐ Preservación en normotermia (perfusión de la solución de preservación)
 - Permite monitorizar la función del órgano
 - Compatible con órganos de criterio expandido
 - Ampliación de plazos de preservación (mejora para logística)

1.3 Objetivos del reto tecnológico

Solución innovadora capaz de:

- Monitorizar la función y el estado del órgano: información objetiva en tiempo real
- 2. Posibilitar uso de órganos de criterio expandido
- 3. Ampliar los plazos de preservación bajo condiciones fisiológicas, sin alteración de la función metabólica ni secretora del órgano
- 4. Predecir la viabilidad post-trasplante del órgano

1.4 Áreas de actuación

☆Área 1: Desarrollo de la logística del trasplante

♦Área 2: Desarrollo del dispositivo

☆Área 3: Desarrollo de gestión y control del sistema

♦Área 4: Monitorización del estado del órgano

♦Área 5: Monitorización de la funcionalidad del órgano

Desarrollo de la logística del trasplante

Objeto: desarrollo de un sistema que mejore la comunicación entre las partes implicadas en una cirugía de trasplante de órganos, mediante la organización y gestión de datos obtenidos, y facilitando la transmisión bidireccional de los mismos a tiempo real.

- Monitorización objetiva del estado del órgano a tiempo real (sensores)
- Monitorización objetiva de la funcionalidad del órgano a tiempo real (productos de desecho)
- Gestión fácil e intuitiva de los datos obtenidos
- Comunicación entre hospitales (sistemas de alarma / tecnología segura / adaptación a entorno quirúrgico)
- Ampliación de plazos de preservación bajo condiciones fisiológicas (análisis de los plazos máximos)

Desarrollo del dispositivo

Objeto: diseño y desarrollo de un sistema de preservación y mejora, en caso necesario, de órganos bajo condiciones de normotermia que permita la monitorización de los mismos y asegure su viabilidad técnica.

- Equipo autónomo (>2h), compacto, modular y versátil. Fácil higienización. Fácil transportabilidad
- Compatible con órganos de cerdo
- Capacidad para preservar diferentes órganos
- Suministro de fármacos y nutrientes
- Control de temperatura y control hemodinámico
- Movilidad del órgano
- Toma de muestras
- Compatibilidad con entorno quirúrgico
- Pantalla (táctil / reconocimiento voz) para visualización y control de datos
- Monitorización estado y funcionalidad del órgano
- Asistencia

Desarrollo de gestión y control del sistema

Objeto: desarrollo de un software que permita la recopilación, organización y gestión de los datos obtenidos de los diferentes sensores del sistema de preservación y que facilite la transmisión de dicha información, así como ser capaz de registrar las órdenes externas que modifiquen los parámetros de variación del órgano.

- Almacenamiento y recogida de datos en tiempo real
- Gestión de los datos
- Creación de una base de datos
- Gestión fácil e intuitiva de los contenidos
- Sistemas TIC (gestión parámetros / trazabilidad / control de alarmas / toma de decisiones / predicción de viabilidad del órgano)
- Garantía de calidad de los productos desarrollados e implantados

Monitorización: estado del órgano

Objeto: control constante del estado del órgano preservado basado en la inclusión de sensores o similares que permitan analizar las variaciones y gestionar su manejo.

- Inclusión sensores (o similar) que analicen estado del órgano en tiempo real
 - Saturación O₂, pH, glucosa, t^a y detección hematocrito (Htc)
- Solución de perfusión (medidores de caudal)
- Control hemodinámico
 - Valores fisiológicos de presión arterial media
- Toma de muestras
 - Biopsias de tejido, muestras de líquido, etc
- Órganos de criterio expandido
 - Modificación y gestión de parámetros para recuperación

Monitorización: funcionalidad del órgano

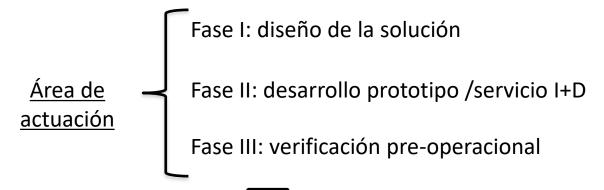
Objeto: control constante de la funcionalidad del órgano preservado basado en la vigilancia y gestión del metabolismo y actividad secretora del mismo.

- Actividad secretora: contenedores de almacenamiento
 - Bilis y orina
- Filtro de diálisis
- Toma de muestras
 - Biopsias de tejido, muestras de líquido, etc
- Órganos de criterio expandido
 - Modificación y gestión de parámetros para recuperación

2. Calendario de ejecución

FASES	INICIO	FIN
FASE I: DISEÑO DE LA SOLUCIÓN (4 meses)	01/06/2021	30/09/2021
Diseño de la solución	01/06/2021	15/09/2021
Justificación Fase I	15/09/2021	16/09/2021
Evaluación y certificación Fase I	16/09/2021	30/09/2021
FASE II: DESARROLLO PROTOTIPO/SERVICIO I+D (15 meses)	01/10/2021	31/12/2022
Desarrollo del prototipo/Servicio I+D	01/10/2021	15/12/2022
Justificación parcial Fase II	30/04/2022	01/05/2022
Evaluación parcial Fase II	01/05/2022	15/05/2022
Justificación Fase II	15/12/2022	16/12/2022
Evaluación y certificación Fase II	16/12/2022	31/12/2022
FASE III: VERIFICACIÓN PRE-OPERACIONAL (3 meses)	01/01/2023	31/03/2023
Verificación pre-operacional en AP	01/01/2023	15/03/2023
Justificación Fase III	15/03/2023	16/03/2023
Evaluación y certificación Fase III	16/03/2023	31/03/2023

NOTA: Al finalizar el plazo de justificación de cada fase (I, II, PARCIAL II y III) se debe realizar una presentación (presencial o telemática) para mostrar los resultados obtenidos



3. Requisitos de ejecución y entregables

Fase Entregables

Criterios de verificación de ejecución

NOTA: los requisitos de ejecución y entregables se detallan en el punto 3 del Anexo I

4. Escenario verificación pre-operacional

Verificación: Centro de Cirugía de Mínima Invasión "Jesús Usón"

Plan de pruebas:

ESCENARIOS	RESULTADOS ESPERADOS	
Tiempos máximos de viabilidad de órgano	Demostración de la capacidad del sistema desarrollado para aumentar los tiempos de preservación actuales en dos órganos diferentes (hígado y riñón) y poder programar la intervención (actualmente, hígado de manera inmediata y riñón hasta 24h)	
Control y mejora del estado y funcionalidad del órgano	Demostración de la capacidad del sistema para controlar y mejorar el estado y funcionalidad del órgano (óptimo y de criterio expandido)	
Logística global del trasplante en entorno real (aplicable a las áreas de actuación A1 y A3)	Demostración de la capacidad del sistema desarrollado para la correcta comunicación, gestión del transporte y monitorización del órgano desde un hospital al CCMIJU	
Entorno quirúrgico con dos órganos (aplicable a las áreas de actuación A2, A3, A4 y A5)		
Viabilidad post-trasplante	Demostración de la capacidad del sistema para establecer una predicción de la viabilidad post trasplante del órgano (óptimo y de criterio expandido) y seguimiento posterior del paciente	

<u>NOTA</u>: una vez finalizada la Fase III el prototipo permanecerá como demostrador tecnológico en el Centro de

Cirugía de Mínima Invasión Jesús Usón (Extremadura) durante 5 años

¡Gracias por su interés!

+info sobre programas y ayudas CDTI para proyectos de I+D empresarial e innovación

@CDTloficial

