
Future procurements at CERN in mechatronics and electronics

Alessandro Masi, CERN

Full Remote Alignment System (FRAS) project

https://indico.cern.ch/event/1079026/contributions/4544748/attachments/2330326/3972436/FRAS_HL_LHC_collaboration_meeting.pptx

- It consists of alignment systems (alignment sensors, motorized adapters, their acquisition and control/command systems, associated software) allowing to determine the position of components and readjust them remotely within a range of ± 2.5 mm
- All components from Q1 to Q5 (i.e. quadrupoles and dipoles magnets, collimators) in the LHC interaction points
- Installation and commissioning deadline: LS3 (end 2028)

BEAMS

FRAS project: future tenders

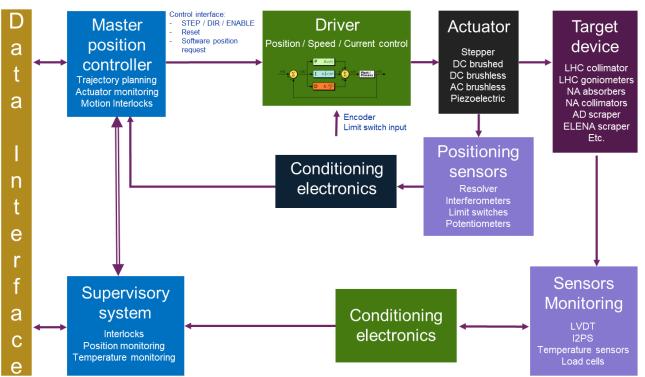
BEAMS

➢ Rad-hard stepper motors (TID 2 MGy) need for FRAS, ~200 full steps per revolution

Motor type	Quantity needed	Inductance/ phase [mH]	Current / phase unipolar [A]	Current / phase bipolar [A]	Holding torque [Nm]	Detent torque [Nm]	Rotor inertia [kgcm²]	Weight [kg]	Length [mm]	D1, D4, L6 in picture [mm]	Other
Type1	~210	~3	~3.5	~5	~ 3.5	~0.15	~ 1.3	<5	~ 150	~ 40, 70, 60	Single shaft with keway
Type2	~300	~9	~1.5	~2	~1	~0.1	~0.25	<3	~200	~ 75, 100, 90	Single shaft with kewa
Quantity				ltem		Estima	ated Bud	lget Ranç	ge M	arket survey by	
		210 300		Stepping Mo Stepping Mo			>750kCł	HF, <5 M	CHF	Q	3 2023

Technical responsible: Mario Di Castro

mario.di.castro@cern.ch


Sensors Acquisition & Motion Control (SAMbuCa)

Flexible and modular low-level control solution for mechatronics devices to provide a standard mechatronics control solution (i.e. standard HW building blocks & API) for the Accelerator Technology Sector

- ✓ Hard RT constraints → FPGA-based controllers
 - timing synchronization (i.e. White Rabbit)
 - μs response time
- User friendly API to profit of all the hardware features

SAMbuCa architecture

Sensors Acquisition & Motion Control (SAMbuCa)

PXIe Chassis

PXIe Controller

Application FMC Card

Expansion System Controller with FMC carrier

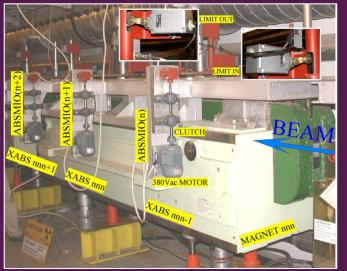
PXIe Survey & Motion FMC carrier

Expansion Chassis

✓ PXIe front-ends

✓ PXIe carrier card:

- ✓ equipped with a large FPGA for data processing and RT control
- ✓ can host one FPGA Mezzanine Cards (FMC) to ensure the interface with the field instrumentation, sensors and actuators
- ✓ Set of FPGA Mezzanine Cards (FMC) to cope with the various field control and instrumentation applications (LVDT, resolvers, IOs, strain gauges, interferometer reading, motor drivers)
- Expansion chassis ensures modularity. It is equipped with a system controller linked and synchronized to the PXIe carriers via White Rabbit


Optical or cable links

SAMbuCa: CERN Scope



LHC Collimator

NA absorbers

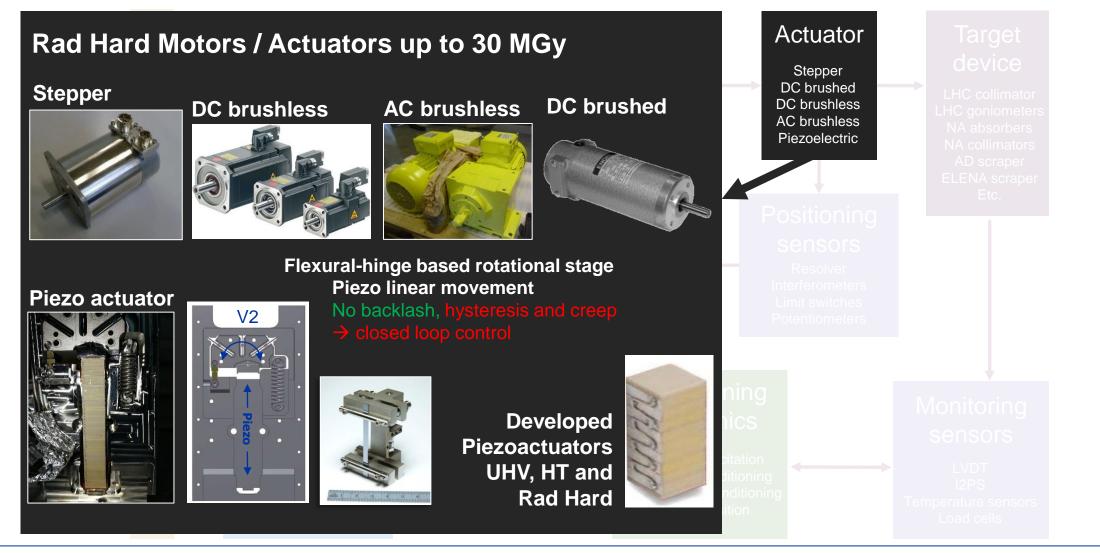
LHC crystal goniometer ELENA & AD scrapers

NA collimators

brushies

device LHC collimator LHC goniometers NA absorbers NA collimators AD scraper **ELENA** scraper

Target


Etc.

Future procurements at CERN in mechatronics and electronics, A. Masi

SAMbuCa: Actuators compatibility

SAMbuCa: Power Driver

https://indico.cern.ch/event/1115112/contributions/4688938/attachments/2376100/4058940/2022-01-20%20Motor%20Driver%20Overview%20SAMbuCa.pdf

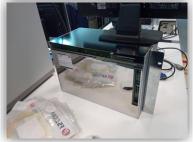
Main features

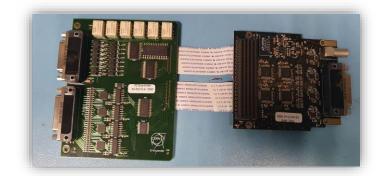
- Robust and accurate control of stepper and DC brushed motors in constant current or speed control (including also AC and DC Brushless)
- Use over long distances with cable length compensation up to 1km
- standard stepping (open loop) or FOC (closed loop) control via the same interface and hot swappable
- Kalman Filter for position and torque estimation

Main specifications

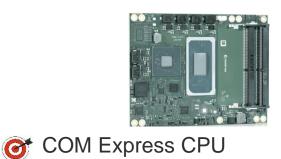
- ✓ Control of 1 stepper motor or 2 DC brushed motors or 1 DC brushless
- ✓ Maximum current per phase: 10 A (rms)
- ✓ Maximum DC voltage: 170 V
- Communication interface: MODBUS over RS485, PROFINET, Standard stepper interface (STEP, DIRECTION, ENABLE)
- ✓ Supports up to 2 encoders
- ✓ Current loop bandwidth up to 1 KHz

Previous driver version in operation




SAMbuCa: other building blocks

For detailed information: Home · Wiki · Projects / SAMbuCa · Open Hardware Repository (ohwr.org)


PXIe standard High Availability Chassis

FMC cards for step motion control: gateware grbl interpreter based

- General purpose DI/DO/AI/AO
- Resolvers, LVDTs, potentiometer front end module

https://ohwr.org/project/fmc-mfe/wikis

 PXIe carrier card for FPGA Mezzanine Card (FMC) standard <u>https://ohwr.org/project/spexi7u/wikis/home</u>

COM Express-PXIe adapter https://ohwr.org/project/pxie-ctl-comexpress/wikis

SAMbuCa: procurement numbers

ltem	Tot. Number
PXIe Carrier	400
AF Motion Control FMC Card	400
COMe – PXIe	400
COMe CPU	400
Stepping Motor Driver	1200

ltem	Estimated Budget Range	Market survey by
Stepping Motor Drivers	200k <c<750k< td=""><td>Q2 2024</td></c<750k<>	Q2 2024
FMC cards for Motion Control	50k <c<200k< td=""><td>Q1 2024</td></c<200k<>	Q1 2024
PXIe-COMe adapter	200k <c<750k< td=""><td>Q1 2024</td></c<750k<>	Q1 2024
COMe CPU	200k <c<750k< td=""><td>Q4 2023</td></c<750k<>	Q4 2023
PXIe Carrier	200k <c<750k< td=""><td>Q1 2024</td></c<750k<>	Q1 2024

Quench Heater Power Supplies (Superconducting Magnet Protection)

Heater Discharge Power Supply -> Quench heater power supplies are an essential part of the quench protection system for the new HL-LHC magnets Main powering Front panel and triggering Capacitor > The systems have been designed by circuit bank **CERN** and will have to be built to print **Back panel** Capacitors Market **Estimated Budget** Quantity survey Range **Technical responsible**: Mirko Pojer by Mirko.Pojer@cern.ch David Carrillo 270 >750kCHF, <5 MCHF Q4 2022 d.carrillo@cern.ch

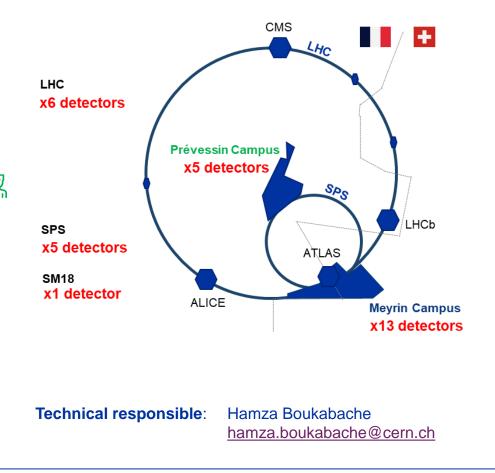
Quench Heater Power Supplies: Main parameters

- ✓ Max. stored energy: 3.5 kJ +10%
- ✓ Nominal storage energy bank capacitance: 7.05 mF ± 20 %
- ✓ Operational peak current: 200 A
- ✓ Max. peak current: 300 A
- ✓ Rated voltage: 940 V DC (expected range 920-960 V DC assuming ± 2 % of the 230 V AC input power variation)
- ✓ Max (continuous) rated voltage: 1000 V DC
- ✓ Total weight of the unit < 25.5 kg
- ✓ Rack dimensions: Height 5 U x Width 19 inches x maximum length: < 600 mm

 Technical responsible:
 Mirko Pojer

 Mirko.Pojer@cern.ch
 David Carrillo

 d.carrillo@cern.ch



Site Gate Monitors

Overall Objective: Prevent Harm to the Environment

- 1. Reliable and fast detection of radioactive objects aboard vehicles and originating from CERN activities
- 2. Intercept and identify those vehicles through the site exit control system
- Complete renewal of CERN car gates RP monitoring systems by LS3 (i.e. 2028)
- The procurement strategy is not yet decided. Two possible alternatives:
 - Full externalization → engineering and manufacturing (open to collaboration)
 - ➢ Partial externalization → Only manufacturing and assembly (engineering in house)

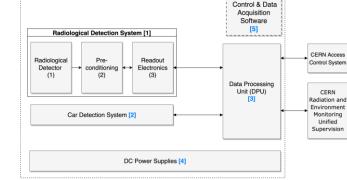
Quantity	ltem	Estimated Budget Range	Market survey by
30	Site Gate Monitoring System	>750kCHF, <5 MCHF	Q3 2023

SEAM:

Site Gate Monitoring

Detection and interception of radioactive objects at CERNs site exits

Main Challenges :


- False detection rate less than 0.001% (>2.4M cars/year)
- Detection performances
- > Live control on vehicles flow without traffic disruption
- integration into CERN SCADA systems and CERN access system

Current system

Access control

- > The site gate monitor system is based on:
 - ✓ Radiology detection system
 - **Car detection system** \checkmark
 - ✓ Processing and control unit

Electronics Workshop machines renewal

BGA repair station:

Infra-red based process, embedded mini-stencil station, live process control (temp+camera), max PCB dimension to be determined, semi-automated at least

ltem	Estimated Budget Range	Market survey by
BGA repair station	<200k	Q1 2023
Reflow oven	200k <c<750k< td=""><td>Q1 2024</td></c<750k<>	Q1 2024

Reflow oven:

Vapor phase process, real time temperature control, PCB dimension up to 650x650mm, batch equipment

Technical responsible: Raphael Berberat Raphael.Berberat@cern.ch

Robotics related possible future procurements

ROV with robotic arm

- ✓ Minimum 6DoF
- ✓ ~ 100 kg payload
- ✓ Minimum speed 2km/h
- ✓ Battery autonomy > 4hours

ROV base only

- ✓ Minimum speed 2km/h
- ✓ Battery autonomy > 4hours

- Versatile legged and wheeled solutions to reach complicated zoned with robotic arm
 - ✓ ~ 5 kg payload
 - ✓ Minimum speed 2km/h
 - ✓ Battery autonomy > 2 hours

- Motion capture system
 - \checkmark Area to cover ~ 5 x 5 meters

AMS

- ✓ Sub mm precision
- ✓ Up to 20 objects to track
- \checkmark > 200 Hz of acquisition rate

https://optitrack.com/systems/

www.telerob.com

ltem	Estimated Budget Range	Market survey by
ROV with robotic arm	200k <c<750k< td=""><td>Q3 2023</td></c<750k<>	Q3 2023
ROV base only	<200k	Q1 2023
Versatile legged and wheeled solutions	200k <c<750k< td=""><td>Q2 2023</td></c<750k<>	Q2 2023
Motion capture system	<200k	Q1 2023

Technical responsible:Mario Di Castro
mario.di.castro@cern.ch

Big Science Business Forum 2022 | CDTI (bsbf2020.org)

beams.cern