

Mutsu Bay

Overview of A-FNS

Pacific Ocean

KASUGAI, Atsushi Rokkasho Fusion Institute , National Institutes for Quantum Science and Technology (QST)

DONES Business Info Day, Spanish Embassy, Tokyo, December 4,2023

Outline

- 1. Conceptual design report of A-FNS
- **2. Introduction for DEMO**
- 3. Site and Building
- 4. Accelerator Facility
- 5. Li Target Facility
- 6. Irradiation Test Facility
- 7. Applications
- 8. Summary

QST-R-19

Coor

Conceptual design report of A-FNS

The CDR of A-FNS was completed based on a Plant Integration Document (PID) in March 2020.

	Item level 1	Level2		
1	Introduction	History of fusion neutron source Necessity of fusion neutron source development Objectives and contents of this CDR		
2	Advanced Fusion Neutron Source	Design requirements Basic specifications configuration of the system Scenario and operation plan	核融合中性子源A-FNS概念設計書 Conceptual design document on Advanced Fusion Neutron Source, A-FNS March 9, 2021 (Received - March, 2021) Rokkasho Fusion Institute 六ヶ所核融合研究所	
3	Infrastructure	Overview, Site condition, Main building of A-FNS, Electric power receiving equipment, Water and Supply and Drainage equipment-supply, Air conditioning	国立研究開発法人 量子科学技術研究開発機構 National Institutes for Quantum and Radiological Science and Technology	
4	Sub-system design	Accelerator, Target,		
5	Summary	Test Facility, Modules, RH, Maintenance, Control, Saf	https://www.qst.go.jp/site	
6	Prospective toward EDA	ely, Fic, Activation storage and related facilities	/archives/1109.html	
	Appendix) Cost estimation			

Step for Realization of Fusion Energy

A-FNS configuration

We have already started the conceptual design activity of A-FNS using of results of IFMIF/EVEDA.

Design and R&D activities of A-FNS are steadily progressed.

Specification of A-FNS

A-FNS facility & the Concept

- ✓ One line of IFMIF Accelerator (125mA). Design will be based on IFMIF Engineering Report.
- ✓ Li Target loop is almost same of IFMIF/EVEDA. R&D. Purification validation will be done in BA Phase II.
- ✓ Many Irradiation modules will be proposed for Fusion Material Tests. This concept is Japanese original idea.
- Remote handling maintenance using side pull-out with all shielding plugs (Japanese Idea).
- ✓ Multi purpose Neutron Source for Industrial use.
- ✓ All Japan flamework with industry and university.

Irradiation Test Area

A-FNS main building

Basic conditions for the main building

Lithium handling amount : max. 5 t (Twice as much as Oarai's ELTL) (x 100 the legal specified quantity)

Other dangerous material : Heat transfer oil

Special facilities to the regulations of both the RI and the Fire

Overall facility design

110 researcher, 85 technical staff, 75 administrative staff, and 120 users, approximately 400 in total.

Facility layout

Accelerator System

" The current design is Same as IFMIF accelerator

The requirements for accelerators are the same as IFMIF.

The current design is an IFMIF intermediate engineering design. Based on

- 125 mA deuteron beam acceleration
- Future engineering demonstrations at
- High duty /CW operation, introduction of SRF Linac, Beam Availability
 ⇒ Improvements and overcoming issues at the engineering design level
- Challenges that may require changes in conceptual design:
 - Li vapor influence on SRF cavity ⇐ " Liquid Li target "
 - Meeting beam loss rate requirements ⇐ " Large current " " Deuteron "

Li Target Facility

IFMIF/EVEDA Li Test Loop (ELTL) was designed and

constructed to validate the IFMIF Li target facility.

Mission

Validations of: (1) Long time stable Li target (2) Li target diagnostics (3) Li purification (Cold Trap)

Design specification of the IFMIF Li target

Beam power	10 MW (1 GW/m ²)
Target speed	15 m/s (10 ~ 16 m/s)
Target width/thickness	260mm / 25 mm
Thickness variation	< ±1mm
Inlet Li temperature	250 °C (at the nozzle exit)
Vacuum pressure	10 ⁻³ ~ 10 ⁻² Pa (Li free surface)

Schematic view of ELTL

Irradiation Modules and Test Facility

In discussion with JA experts in reactor materials and DEMO design, the following contents were categorized by neutron field strength.

A-FNS is utilized like multipurposes neutron source.

- For Fusion Material Test Neutron flux measurement (NFM) Blanket structure material test (BSM) Blanket functional material test (BFM) Divertor functional material test (DFM) Active corrosion production (ACP) Tritium release test (TR) Creep fatigue test (CF)
 - Diagnostic controlling device test (DCD)
 - Blanket nuclear property test (BNP)

For Industrial Use

RI production (RIP)
Low Energy irradiation
Neutron beam hole (NBH),
Gas & liquid loop

Irradiation capsules and High Flux Test Module.

- Concept of Honeycomb cylinder type for irradiation module of A-FNS. Consideration of thermal analysis, structure and maintenance by remote handling.
- ✓ Design of unified standardization capsules with BSMTM.
- ✓ Similar design concept of capsule of irradiation nuclear reactor.
- Simplified design and homogenization of irradiation condition suchi as temperature and DPA.

- To simplify the irradiation capsule structure, we designed the capsule of cylindrical configuration.
- In order to clarify the irradiation conditions of the test specimens and to facilitate the reinstallation of the test specimens, one type of test specimens is installed into one capsule.

Multi purpose application

• A-FNS will provide not only fusion but also high-energy neutron irradiation field with high general-purpose properties covering domestic basic research, industrial, medical and energy applications.

Concept of Neutron Forrest for Neutron Industry

Contribution of Japanese Companies for A-FNS Design

Main Company		Content
Mitsubishi Heavy Industry (MHI)		A-FNS overall design, Li system design, Safety
Toshiba Energy Systems	TOSHIBA	Design of Irradiation module, Remote handling, Test cell
іні ІН		Remote handling design, Thermal design of test cells
Tokyo Electric Power Services		Design of Site equipment, Main building
JGC	JGC	Design of conventional facilities and systems
SUKEGAWA Electric	Nimblox.	Design of Li purification system, , Mock-up of test modules
Metal Technology	Med Terwing Guist	Thermal design of test modules
Hitachi	Hitachi, Ltd.	Injector design
MHI-Machinery Systems	MITSUBISHI HEAVY INDUSTRIES MACHINERY SYSTEMS	SRF design
Mitsubishi Electric		MEBT, HEBT design
NAT MAT		Support of A-FNS design activity and R&D activity

Summary

- We are proceeding with the design study of the entire fusion neutron source A-FNS plant, including the accelerator system, target system, test module, and post-irradiation test equipment, and created a conceptual design document for the fusion neutron source A-FNS in 2020. Achieved domestic milestones required for mid-term C&R.
- We continue to advance engineering design and R&D, and we continue to work on R&D and design activities for common to DONES in BA Phase 2.

Issues to be addressed during the engineering design period (engineering design activity plan)

- ✓ Development of accelerator for A-FNS (design and development based on LIPAc)
- ✓ R&D and design of lithium targets (purification system, diagnostic system, Li safety, etc.)
- $\checkmark\,$ Design of irradiation module thermal fluid analysis etc.
- ✓ R&D of remote maintenance technology
- ✓ A-FNS safety research
- ✓ Neutron applied research

