

IFMIF DONES for non fusion applications

D. Cano-Ott

Nuclear Innovation Unit – CIEMAT

daniel.cano@ciemat.es

on behalf of the Spanish Nuclear Physics Network fNUC@DONES study group

Demo Oriented NEutron Source - DONES

One of the most powerful accelerators in the world:

40 MeV deuterons. ~90 m Broad beam profile: 20 cm x 5 cm. Liquid lithium neutron 125 mA production target Medium Energy Beam Transport Injector + ECR 5 MeV 100 keV HE beam transport 40 MeV SC Linac 40 MeV **RFQ** 5 MeV **ESFRI** facility proposed in Granada.

The DONES facility

Big Science Business Forum 2022, October 4th – 10th @ Granada

Spanish experience with neutron beams

Spanish institutions form 20% of the collaboration and are leading 20% of the experiments. Large experience in neutron physics and nuclear instrumentation (FAIR, n_TOF and ISOLDE @ CERN...)

- Experiments at ILL-Grenoble and other experimental reactors.
- First Spanish proposals at the new **Neutrons For Science (NFS) facility** at SPIRAL-2 (France).

What could we do at DONES?

Experiments with continuous and pulsed neutron beams.

I. Fundamental nuclear physics

http://fnuc-at-dones.es/

- Nuclear reaction studies
- Nuclear structure studies
- Calibration and development of instrumentation

II. Nuclear physics & industrial applications

- Nuclear data for nuclear technologies: fission, fusion, space, medical applications
- Radiobiology
- Material science
- Neutron imaging
- Isotope production for various purposes (medical, radiotracers, industry...)
- Irradiation of electronics
- Irradiation of plant seeds
- R&D on cargo inspection and homeland security

Applications with continuous neutron beams

6,5 m 1,5 m 1,7 m 4,8 m

Applications

Neutron beam crossing the Sample irradiation module (HFTM):

- Production of isotopes. A large variety of isotopes for applications (medical, radiotracers...) and science.
- neutron imaging with continuous cold neutron beams for science and industry.
- Material composition analysis via neutron activation techniques.
- Irradiation of electronics. Single event effects, sensor calibration & development.
- Radiobiology. Irradiation of cell cultures. DNA damage. Impact on radiotherapy, space missions...
- Irradiations of seeds (for inducing valuable mutations).

Fast neutron imaging

Ch. Tötzke et al., High-Speed Neutron Tomography at ILL, "Opt. Express 27, 28640 (2019)

3D imaging (by rotating the sample) and 4D (in steps of a few seconds - minutes).

Time dependent water flow, taken from Ch. Tötzke (Nature) t = 0 min1 min 2 min 6 min 60 min

Prompt and Decay Gamma neutron Activation Analysis

A non-destructive technique:

Irradiation wit thermal or fast neutrons. Detection of the characteristic γ-rays from:

- (n,n'γ) and (n, γ) reactions during the irradiation Prompt Gamma Neutron Actitation (PGNA)
- From the β-decay Decay Gamma Neutron Activation.

High sensitivity: materials in the mass range from picograms to miligrams.

Electronics: SE-effects, sensor calibration & development

Use the continuous high energy neutron beam (and deuterons if possible) to:

- Induce and study Single Event effects (SE-effects) in semiconductors.
- Develop neutron dosimeters based on semiconductors.
- Calibration many different types of sensors.

Irradiation of cell cultures

Impact of radiation on living cells. Improve the knowledge of relative biological effectiveness of radiation. Impact of neutrons in the far from field dose in a proton therapy treatment.

- Experiments for the determination of **cell survival rate**, **DNA damage**, **chromosomic aberrations** ... Use of gold nanoparticles GNP.

Applications with pulsed neutron beams

The TOF-DONES neutron time of flight facility

Use of ~5 ns broad deuteron pulses at a 175 kHz repetition rate. Requires only 0.1 % of the IFMIF DONES beam beam.

The TOF-DONES preliminary concept

Included in the "Identification of Complementary Experiments in R026 and Preliminary Safety Implications".

Image courtesy by P. Ortego / SEA Ingeniería p.ortego@seaingenieria.es

Comparison of TOF-DONES with other facilities

20 m TOF distance + 125 μA deuterons (0.1% of the IFMIF-DONES beam) on thick graphite

The TOF-DONES experimental program

Answering the question of "what happens when a given material (isotope) is bombarded with a neutron?":

- How probable is the reaction as a function of the neutron energy?
- What are the secondary particles emitted?

Very important for nuclear technologies (fission and fusion), astrophysics, astroparticle physics, dosimetry, space missions, cancer treatments...

There is a huge experimental program to be covered. The identified priorities require already decades of beam time (n_TOF, NFS, nELBE, GELINA):

- 52 isotopes listed in the High Priority Request List for nuclear technologies (also for fusion).
- Over 35 (n,γ) prioritary cross section measurements for astrophysics.

Non fusion applications and industry

IFMIF-DONES could **boost** the Spanish (and international) **nuclear science** and **science industry**. It will also offer important **business opportunities**:

- Engineering: design and construction.
 - Shielding/target materials.
 - Mechanics.
 - Vacuum technologies.
 - Superconducting magnets.
 - Cryogenics.
 - Electronics (power, low power).
- Nuclear instrumentation and detectors.
- Information technologies (data acquisition, data centres, hardware).

Opportunities for the science business:

- Neutronic characterisation of materials (isotopic identification, activation...)
- Radiation hardness of electronics.
- Production of isotopes for various applications.
- Development of detectors, sensors and realisation of tests/calibrations.
- Education and training.

Summary and conclusions

IFMIF DONES offers unique and superb scientific and technological possibilities.

- Cover a lack of high intensity neutron sources in Spain for fundamental and applied research.
- Offer vey high intensity and high energy neutron beams:
 - Continuous beams for applications.
 - Pulse beams at the TOF-DONES facility, which would be one of world's highest intensity neutron TOF line for nuclear physics.
- Opportunities for science industry: contributing to its construction and for developing new high end products. Neutrons are and will be even more important in the context of the nuclear renaissance experienced worldwide.
- Boost largely the IFMIF-DONES scientific production.
- Be a unique place for educating and training young scientists, engineers and technicians.

The Spanish Nuclear Physics community has the necessary **expertise** and **skills** for contributing to the facility's success!

