

Big Science Business Forum 2022

Big Science Business Forum 2022 – Granada
Session B3: Basic material technologies and advanced manufacturing techniques

Industrial opportunities at CERN: focus on materials

Ignacio.aviles.santillana@cern.ch

6 October, 2022

Contents (specific focus on business opportunities):

- Introduction to the EN/MME group
- Raw materials
- CERN Stores, current projects
- HL LHC, current projects
- Miscellaneous

Mechanical & Materials Engineering Group

Courtesy of F. Bertinelli

Design

Design Office

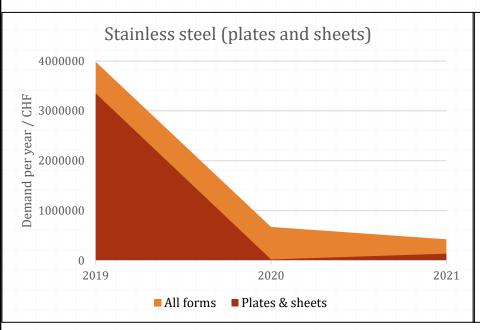
50+ designers and 15+ engineers

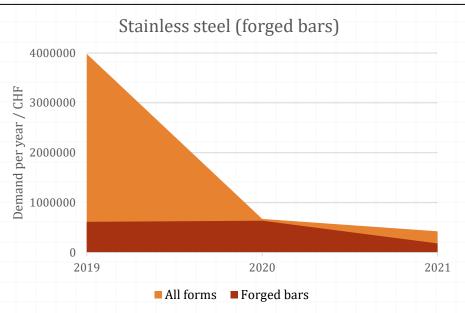
CATIA v5 / SmarTeam, ANSYS, L

The mandate of the MME group is to provide to the CERN community specific engineering solutions combining mechanical design, fabrication and material sciences, using in-house and industry facilities, for beam accelerator components and physics detectors.

⇒ Prototypes and development work

Materials


Material science and engineering
 metallurgical analyses, microscopy including FIB, mechanical tests including at cryogenic temperature
 NDT: UT, radiography, microtomogra

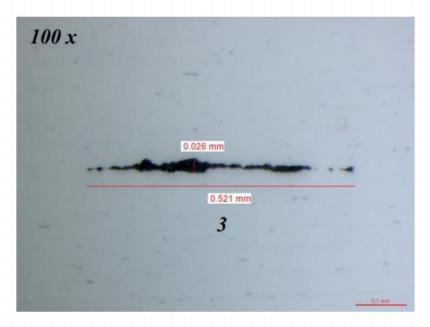

• **Metrology:** 350 m² Lab.. several CMM

CERN stores

CERN stores centralize the raw material purchase and assure the availability of strategic materials of the Organization of the most reliable quality

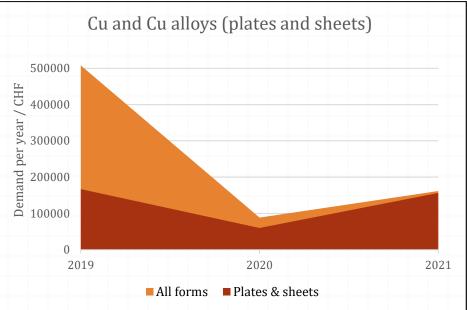
Stainless steel (CERN store specs)

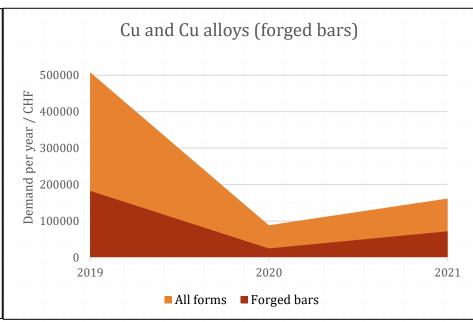
- Very stringent requirements (high quality): e.g.
 - Ultrasonic examination
 - Magnetic permeability
 - Inclusion content
 - Grain size
- Note the 2019 increase of plates & sheets associated to very large contract for superconducting magnets


Stainless steel, special grades and shapes

Strips of 316L grade (1.4441, 1.4435 or 1.4404) for bellows' convolutions:

- ESR remelted
- Very low impurities (P&S)
- Composition guarantees:
 - Ferrite free
 - No martensitic transformation after cold work

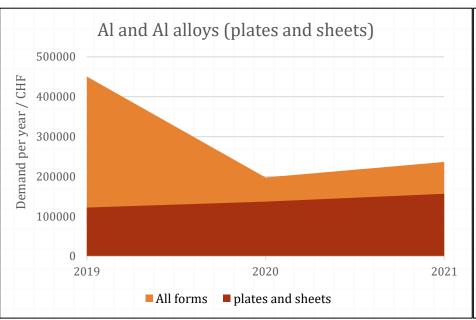

Very tight requirement on inclusion content to avoid leaks

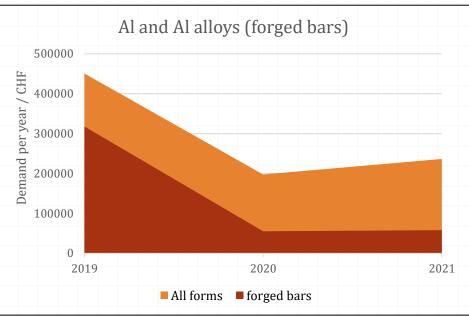


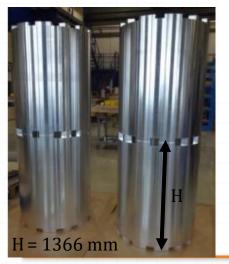
Courtesy of A. Gerardin

Challenging supply due to limited consumption and scarce availability in small quantities.

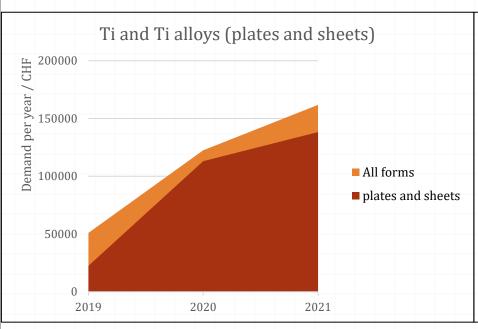
Copper (CERN spec OFE) and copper alloys

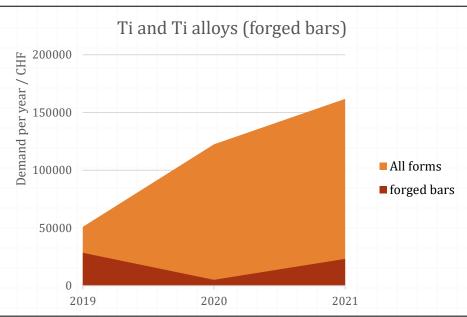

 ← CuCr1Zr TIDVG dump's core & cooling plates


CLIC structure, from OFE − Cu forged bars ⇒


Technical specification for OFE – Cu bars

Aluminium and aluminium alloys





← Forged Al 7075 T6
for the shells of the MQXF quadrupoles

On the lookout of semifinished products of Al and Al alloys

Titanium and Titanium alloys

 Fluctuation of the demand of plates for the crab cavities' He tanks (grade 2).

 Relatively steady demand of bars for the fabrication of flanges (Grade 5 and grade 23).

Technical specifications

Challenging supply due to purchasing of small quantities but with very demanding quality requirements (dedicated technical specifications and technical sheets).

Raw materials: main projects @ CERN stores

Materials	Grade	Form	Estimated
Stainless Steel	316LN EN 1.4429	Rolled and forged round bars	> 750 kCHF; < 5 MCHF
	316LN EN 1.4429	3D forged blanks, rings	> 750 kCHF; < 5 MCHF
	EN 1.4307 / 1.4404 (for pressure purposes)	Sheets and plates	> 200 kCHF, < 750 kCHF
	316L EN 1.4435	Round bars	> 200 kCHF, < 750 kCHF
Copper	CU-OFE	Drawn and forged round bars	> 200 kCHF, < 750 kCHF

Technical specifications are being reviewed by the Raw Material sub committee. Once cleared, these 'dossiers' will be launched.

- Proposal to other science laboratories:
 - Our requirements are typically high quality but low quantities, so let's combine our needs and adopt the same Technical Specification(s)
 - Successfully done between CERN and ITER

HL - LHC

HL – LHC procurement

 HL has been actively purchasign since 2014: First for prototypes, after for materials and components (+ complex mechanical fabrications) for long lead items (magnets, cavities, SC Link, beam screens...).

Courtesy of H. Garcia Gavela

HL - LHC procurement: main projects

- Tungsten heavy alloy Absorbing material for tertiary collimators blocks and for masks. Q1 2023; > 200 kCHF, < 750 kCHF
- CuCr1Zr Material for tapering for the tertiary collimator's jaws.
 Q1 2023; < 200 kCHF
- Graphite Absorbing material for secondary collimators blocks and taperings. Procurement Q1 2023; < 200 kCHF
- Graphitic material (isostatic Graphite and Sigraflex) for the HL-LHC TDE Dump Cores. Q2 2023; > 750 kCHF
- Stainless Steel 1.4435 plates for DQW Vacuum Vessel Tender is ongoing; < 200 kCHF
- Al 6061-T6 for DQW Thermal Shield To be purchased in 2023;
 < 200 kCHF
- ODS copper collimators backstiffeners. Q2 2023;
 - > 200 kCHF, < 750 kCHF

HL – LHC procurement: main projects

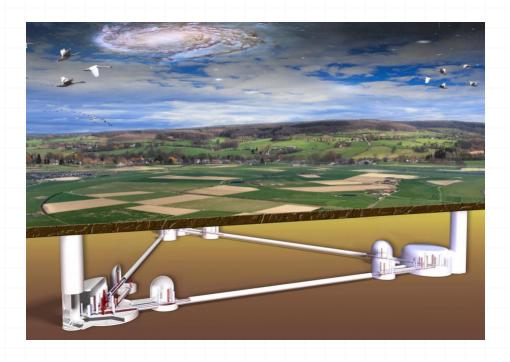
- **Stainless steel 1.4441/1.4435/1.4404** Strips for series production of ~ 400 HL LHC bellows. Q1 2023. > 200 kCHF, < 750 kCHF
- Stainless steel 1.4404/1.4435/1.4306/1.4307
 bars for flanges for for series production of
 400 HL LHC
 bellows. Q1 2023. > 200 kCHF, < 750 kCHF

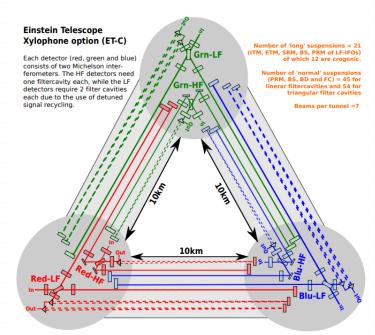
UHV, cryogenics, pressure equipment...

Typical Dimensions: ~ Ø50, Ø100

Materials:

- Strips: 1.4441, 1.4435 (challenging to supply), 1.4404
- Flanges: 1.4429




We are always on the lookout of reliable bellows fabricators

MISCELLANEOUS

Steel for vacuum chambers: the Einstein telescope

Quantities: 120 km; ø =1 m
Is it possible to build UHV chambers with a cost effective solution (mild steel, ultra low carbon steel...)?
Industrial partners for development & procurement needed

Thank-you