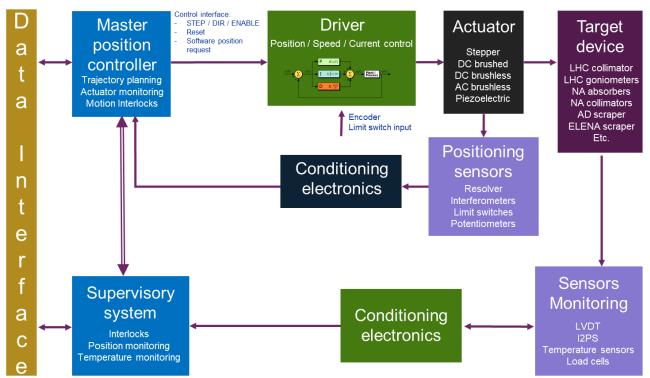


Future procurements at CERN in Instrumentation & Control and CODAC

Alessandro Masi, CERN


Sensors Acquisition & Motion Control (SAMbuCa)

Flexible and modular low-level control solution for mechatronics devices to provide a standard mechatronics control solution (i.e. standard HW building blocks & API) for the Accelerator Technology Sector

- ✓ Hard RT constraints → FPGA-based controllers
 - timing synchronization (i.e. White Rabbit)
 - µs response time
- User friendly API to profit of all the hardware features

SAMbuCa architecture

Sensors Acquisition & Motion Control (SAMbuCa)

PXIe Chassis

PXIe Controller

Application FMC Card

Expansion System Controller with FMC carrier

PXIe Survey & Motion FMC carrier

Expansion Chassis

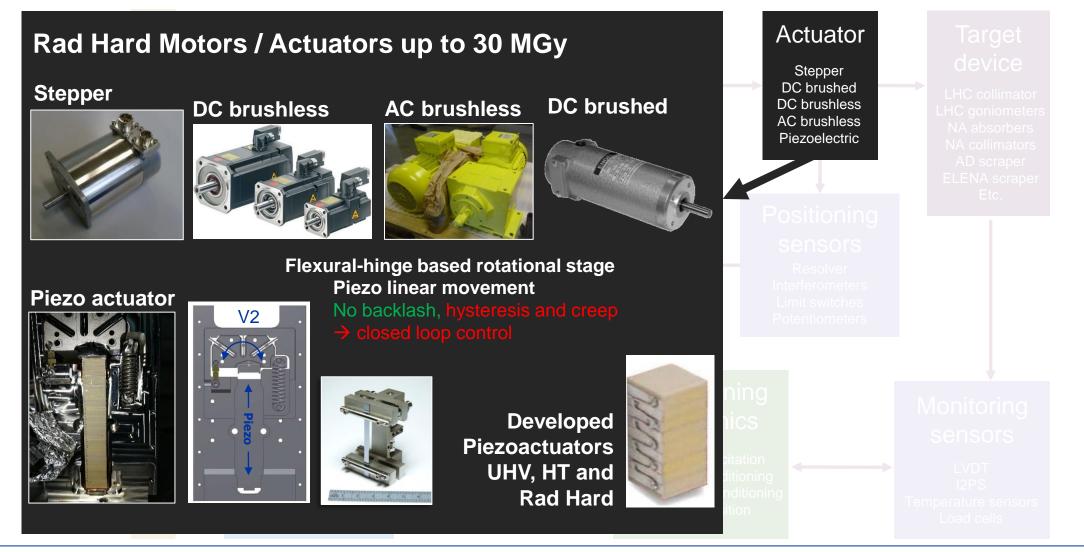
✓ PXIe front-ends

✓ PXIe carrier card:

- ✓ equipped with a large FPGA for data processing and RT control
- can host one FPGA Mezzanine Cards (FMC) to ensure the interface with the field instrumentation, sensors and actuators
- ✓ Set of FPGA Mezzanine Cards (FMC) to cope with the various field control and instrumentation applications (LVDT, resolvers, IOs, strain gauges, interferometer reading, motor drivers)
- Expansion chassis ensures modularity. It is equipped with a system controller linked and synchronized to the PXIe carriers via <u>White Rabbit</u>

Optical or cable links

SAMbuCa: CERN Scope



Target LHC crystal goniometer ELENA & AD scrapers **LHC Collimator** device LHC collimator brushies LHC goniometers NA absorbers NA collimators AD scraper **ELENA** scraper Etc. **NA** absorbers **NA collimators**

SAMbuCa: Actuators compatibility

SAMbuCa: Power Driver

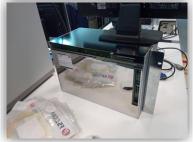
https://indico.cern.ch/event/1115112/contributions/4688938/attachments/2376100/4058940/2022-01-20%20Motor%20Driver%20Overview%20SAMbuCa.pdf

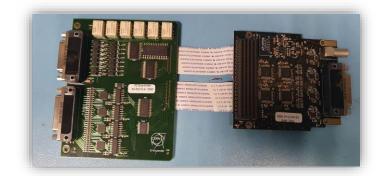
Main features

- Robust and accurate control of stepper and DC brushed motors in constant current or speed control (including also AC and DC Brushless)
- Use over long distances with cable length compensation up to 1km
- standard stepping (open loop) or FOC (closed loop) control via the same interface and hot swappable
- Kalman Filter for position and torque estimation

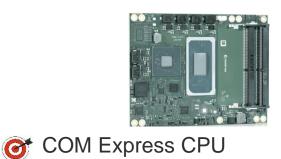
Main specifications

- ✓ Control of 1 stepper motor or 2 DC brushed motors or 1 DC brushless
- ✓ Maximum current per phase: 10 A (rms)
- ✓ Maximum DC voltage: 170 V
- Communication interface: MODBUS over RS485, PROFINET, Standard stepper interface (STEP, DIRECTION, ENABLE)
- ✓ Supports up to 2 encoders
- ✓ Current loop bandwidth up to 1 KHz


Previous driver version in operation


SAMbuCa: other building blocks

For detailed information: Home · Wiki · Projects / SAMbuCa · Open Hardware Repository (ohwr.org)


PXIe standard High Availability Chassis

FMC cards for step motion control: gateware grbl interpreter based

- General purpose DI/DO/AI/AO
- Resolvers, LVDTs, potentiometer front end module

https://ohwr.org/project/fmc-mfe/wikis

 PXIe carrier card for FPGA Mezzanine Card (FMC) standard https://ohwr.org/project/spexi7u/wikis/home

COM Express-PXIe adapter https://ohwr.org/project/pxie-ctl-comexpress/wikis

SAMbuCa: procurement numbers

ltem	Tot. Number
PXIe Carrier	400
AF Motion Control FMC Card	400
COMe – PXIe	400
COMe CPU	400
Stepping Motor Driver	1200

ltem	Estimated Budget Range	Market survey by
Stepping Motor Drivers	200k <c<750k< td=""><td>Q2 2024</td></c<750k<>	Q2 2024
FMC cards for Motion Control	50k <c<200k< td=""><td>Q1 2024</td></c<200k<>	Q1 2024
PXIe-COMe adapter	200k <c<750k< td=""><td>Q1 2024</td></c<750k<>	Q1 2024
COMe CPU	200k <c<750k< td=""><td>Q4 2023</td></c<750k<>	Q4 2023
PXIe Carrier	200k <c<750k< td=""><td>Q1 2024</td></c<750k<>	Q1 2024

Robotics related possible future procurements

- ROV with robotic arm
 - ✓ Minimum 6DoF
 - ✓ ~ 100 kg payload
 - ✓ Minimum speed 2km/h
 - ✓ Battery autonomy > 4hours
- ROV base only
 - ✓ Minimum speed 2km/h
 - ✓ Battery autonomy > 4hours

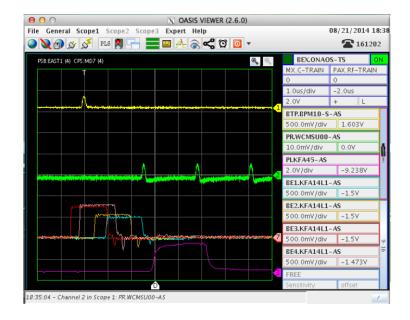
- Versatile legged and wheeled solutions to reach complicated zoned with robotic arm
 - ✓ ~ 5 kg payload
 - ✓ Minimum speed 2km/h
 - ✓ Battery autonomy > 2 hours

- Motion capture system
 - \checkmark Area to cover ~ 5 x 5 meters
 - ✓ Sub mm precision
 - ✓ Up to 20 objects to track
 - \checkmark > 200 Hz of acquisition rate

https://optitrack.com/systems/

Robotics related possible future procurements

ltem	Estimated Budget Range	Market survey by
ROV with robotic arm	200k <c<750k< td=""><td>Q3 2023</td></c<750k<>	Q3 2023
ROV base only	<200k	Q1 2023
Versatile legged and wheeled solutions	200k <c<750k< td=""><td>Q2 2023</td></c<750k<>	Q2 2023
Motion capture system	<200k	Q1 2023


Technical responsible:Mario Di Castro
mario.di.castro@cern.ch

OASIS overview and future needs

- A distributed oscilloscope application for operators and equipment experts
- 1500 signals acquired by 350 multiplexed digitisers. Using 370 trigger events
- Another 2200 signals from FGCs and 850 signals from other data sources
- Current systems based on Compact PCI and PCI
- Complete consolidation required by LS3 (2028) because of EoL of the installed digitizers

OASIS: high-speed digitizers Technical Specs

For the 2 and 4 GSPS

Characteristic	Minimum requirement			
Analogue front-end				
Number of input channels	1			
Input frequency range (-3 dB bandwidth)	DC to 3 GHz			
Input coupling and impedance	DC 50 Ω			
Full scale range (FSR)	1 V			
Vertical offset adjustment	\pm FSR/2			
Vertical offset adjustment resolution	FSR / 2 ⁸			
SNR (at 1 GHz)	52 dB			
SFDR (at 1 GHz)	57 dBc			
ENOB (at 1 GHz)	8			
Digital conversion				
Resolution	14 bits			
Sampling rate (internal clock)	8 GSPS			
Samples memory	2G samples per channel			
Acquisition modes	Single trigger and multi-record			
Record size	Full memory, in one single record or divided for multiple records			
	Triggering			
Trigger sources	External, internal (channel), software			
Trigger slope	Positive and negative			
Trigger timestamp resolution	50 ps			
Trigger timestamp precision	50 ps			
Trigger delay	From 100% pre-trigger (all samples before the trigger) up to 100% post-trigger (all samples after the trigger) independent of record size and acquisition mode			
Trigger delay adjustment resolution	1 ns			
External trigger coupling and impedance	DC 50 Ω			
External trigger level range	0 to 3.3 V			

For 1 GSPS specs refer to <u>Home · Wiki · Projects /</u> <u>FMC ADC 1G 8b 2cha ·</u> <u>Open Hardware</u> <u>Repository (ohwr.org)</u>

1.1.1 Conditions on Linux Device Drivers

1. If the Software includes a Linux device driver, the sources for the driver shall be made available, allowing a full build process. Building of driver binaries and their installation shall be possible through the usual sequence of commands:

2. *[Incentive option 1]* Sources of kernel code shall be made available under a GPL2 or later license. If not licensed this way, the bid will be taxed with a malus as described in the Tender Form.

1.1.2 Conditions on User Space Libraries

- 1. If the Software includes user-space libraries, installation of their binaries should reduce to copying the binaries to configurable places, so that relocatable installation is possible, without any intervening hard-coded path.
- 2. *[Incentive option 2]* Sources of libraries, if made available, shall be licensed under any one of the OSI- and FSF-approved Open Source licenses. If not licensed this way, the bid will be penalized with the malus specified in the Tender Form.

BEAMS

make -C \$(KERNELSRC) M=\$(PWD) modules/modules_install
insmod <module>.ko

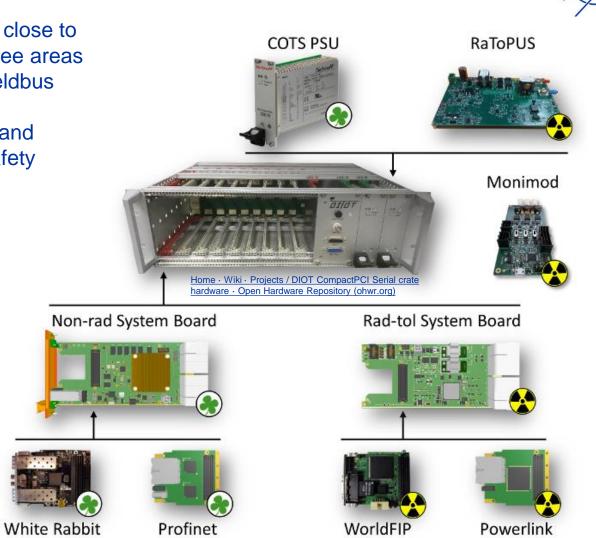
OASIS: high-speed digitizers future tenders

Bits	Sampling Rate	Installed Channel Count	Existing Form(s)	New Form	Estimated Budget	Market survey by
8	1 GSPS	500	50% cPCI, 50% PCI	PXIe (4+ channels per slot)	>750kCHF, <5 MCHF	Q1 2025
10	2 GSPS	45	cPCI	PXIe (2+ channels per slot)	200k <c<750k< td=""><td>End of 2023</td></c<750k<>	End of 2023
10	4 GSPS	20	cPCI	PXIe/PCIe (2+ channels per slot)	<200K	End of 2023
10	8 GSPS	10	cPCI	PCIe (1+ channels per slot)	<200K	End of 2022 (Price enquiry published- Deadline End of Sep 2022)
					Technical responsible: Di	mitris Lamoridis

Technical responsible:

dimitris Lampridis dimitrios.lampridis@cern.ch

DI/OT project overview and future tenders


Home · Wiki · Projects / DIOT - Distributed IO Tier · Open Hardware Repository (ohwr.org)

- Distributed I/O Tier: where electronics modules installed close to a particle accelerator in radiation-exposed or radiation-free areas controlled by the master in the Front-end tier over the fieldbus
- These are usually FPGA-based boards sampling digital and analog inputs, driving outputs and performing various safety critical operations.

Quantity	ltem	Estimated Budget Range	Market survey by
200	DI/OT crate	200k <c<750k< td=""><td>Q2 2023</td></c<750k<>	Q2 2023

Technical responsible:

Greg Daniluk grzegorz.daniluk@cern.ch

SEAM:

White Rabbit

Home · Wiki · Projects / White Rabbit · Open Hardware Repository (ohwr.org)

- White Rabbit provides sub-nanosecond accuracy and picoseconds precision of synchronization for large distributed systems (IEEE1588-2008)
- It allows precision time-tag measured data using the same network to transmit data
- It is foreseen to consolidate by 2028 all the CERN accelerator timing (i.e. Rs485 copper based) with WR

ltem

WR switches v.3

https://ohwr.org/project/whi te-rabbit/wikis/Switch

WR switches v.4

https://ohwr.org/project/wrswitch-hw-v4/wikis/home Estimated

Budget Range

200k<c<750k

200k<c<750k

Market

Q1 2024

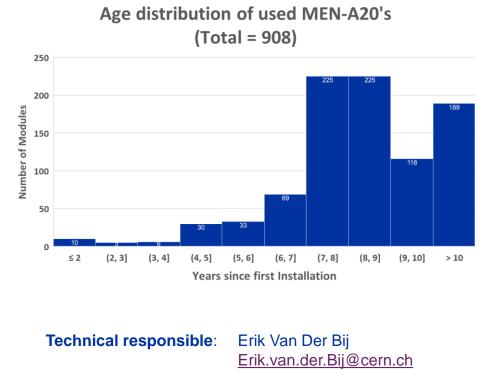
	Switch	Switch	•	€ Sw	itch Network	G
		♪ <u>^</u>		^	Network	
Node 🖉	Node	Node]	Node	Node	
sensor	actuator	database	J	actuator	monitoring)

Q1 2023 Technical responsible: Evangelia Gousiou Evangelia.Gousiou@cern.ch

Quantity

150

100


VME System Boards CPU

- More than 1000 VME crates are currently in operation in the CERN accelerator complex as front-ends for controls and acquisition
- Around 900 VME crates are equipped by a system board that will be obsolete by 2028:
 - ✓ Increase MTTF
 - ✓ Memory not enough for new applications
 - ✓ Intel Core 2 Duo not supported by new Linux distribution
- A smooth consolidation campaign will be launched in the next couple of years

Quantity	ltem	Estimated Budget Range	Market survey by
1200	VME System Board	>750kCHF, <5 MCHF	Q1 2023

Control and CODAC: CERN tenders overview

	Volume (MEUR)	Major tenders (#)
2022	<200K	8 GSPS PCIe digitizers
2023	<200K	4 GSPS PXIe/PCIe digitizers
	200k <c<750k< td=""><td>2 GSPS PXIe digitizers</td></c<750k<>	2 GSPS PXIe digitizers
	200k <c<750k< td=""><td>DI/OT Crates</td></c<750k<>	DI/OT Crates
	200k <c<750k< td=""><td>White Rabbit Switches v.3</td></c<750k<>	White Rabbit Switches v.3
	>750kCHF, <5 MCHF	VME System Boards
	<200K	ROV base only
	<200K	Motion capture system
	200k <c<750k< td=""><td>Versatile legged and wheeled solutions</td></c<750k<>	Versatile legged and wheeled solutions
	200k <c<750k< td=""><td>ROV with robotic arm</td></c<750k<>	ROV with robotic arm
2024	50k <c<200k< td=""><td>FMC cards for Motion Control</td></c<200k<>	FMC cards for Motion Control
	200k <c<750k< td=""><td>PXIe-COMe adapter</td></c<750k<>	PXIe-COMe adapter
	200k <c<750k< td=""><td>COMe CPU</td></c<750k<>	COMe CPU
	200k <c<750k< td=""><td>PXIe Carrier</td></c<750k<>	PXIe Carrier
	200k <c<750k< td=""><td>White Rabbit Switches v.4</td></c<750k<>	White Rabbit Switches v.4
2025		
	200k <c<750k< td=""><td>1 GSPS PXIe digitizers</td></c<750k<>	1 GSPS PXIe digitizers

Big Science Business Forum 2022 | CDTI (bsbf2020.org)

beams.cern