

Cold & Lonely

The Role of Cryogenics, Vacuum Systems & Leak Detection in Big Science Projects

PRESENTED BY J.G. WEISEND II

2022-10-06

Introduction

Cryogenics (T< 120 K),Vacuum (P< 1 Bar) and leak detection systems play a vital role in Big Science Facilities.

Cryogenics provides:

- Cooling of Superconducting Magnets and Superconducting Radiofrequency Cavities
- Production & storage of cold dense liquids for space propulsion (oxygen, hydrogen, methane), neutron moderation (hydrogen and solid methane) and particle detection (argon)
- Cooling of low noise electronics, infrared and x-ray sensors, bolometers and superconducting electronics and quantum computing devices
- Low temperature (down to < 1 K) sample environments</p>
- Production of clean vacuum spaces via cryopumping
- Cooling of space simulation chambers
- Cryogenic distillation columns for nitrogen production and separation of hydrogen as part of the ITER Fuel cycle

Introduction

Vacuum Systems provide:

- Vacuum space for particle beams & associated experiments
- Vacuum insulation for cryogenic systems
- Vacuum for space simulation chambers
- Vacuum environment for material studies

Leak Detection is an enabling technology for both cryogenics and vacuum systems

- Leaks in vacuum systems can result in higher pressures and contamination of clean vacuum spaces
- Leaks in cryogenic systems can result in the loss of gases or liquids and in the freezing of air within the cryogenic systems resulting in blockages and system failure
- Thus all vacuum and cryogenic systems must be leak tight to a high degree (generally must pass a test via a He Leak Detector)

Equipment & Services Required for Cryogenics & Vacuum Systems

This can be divided into 2 categories:

1) Unique, sophisticated equipment for the production and maintanance of cryogenic temperatures and vacuum.

- Examples: cryogenic refrigerators, small cryocoolers, dilution refrigerators, cryogenic instrumentation, storage dewars for cryogenic liquids, cryostats, turbopumps, He leak detectors, liquid and gaseous supplies (He, N₂, Ar)
- A relatively small number of firms provide these services and startups require significant investments in technology development and a steep learning curve

Equipment & Services Required for Cryogenics & Vacuum Systems

2) More standard industrial equipment that is vital for cryogenic and vacuum system construction and operation

- Examples: Room temperature piping, valves, flanges, seals, motors, cabling; warm gas storage systems; room temperature instrumentation and control systems; heat exchangers; water systems; cooling towers; welding services; rigging services
- This category of equipment often represents the larger physical space of cryogenic and vacuum systems
- Items in this category are frequently replaced in regular maintanence activities "long tail"

An Example from ESS

COLD

Procurement Estimates from Participating Institutions (details in follow on talks)

Institute	Estimated Procurements for Cryogenic Systems	Estimated Procurements for Vacuum Systems
CERN	>10 MCHF in the 2023–2027	>10 MCHF in the 2023–2027
ESA		
ESO	7 MEuros in 2023 - 2030	2 MEuros in 2023 - 2030
ESS	100 kEuros total for 2023 - 2027	0.5 MEuros in 2023 0.75 MEuros each year for 2024 - 2027
EXFEL	250 kEuro/year (2022-2026) ^(*) ^(*) (power, cold gases & major upgrades not included)	1.3MEuro/year (2022-2026) (*)(major upgrades not included)
FAIR	55 MEuros total for cryogenics, vacuum & leak detection over the next 5 to 6 years	
F4E	10s of millions of Euros between 2024 and 2030	10s of millions of Euros between 2024 and 2030
SKA		

Sources of Information

Professional Societies

- Cryogenics Society of Europe <u>https://www.cryoeurope.org/</u>
- British Cryogenics Council <u>https://bcryo.org.uk/</u>
- Cryogenic Society of America <u>https://www.cryogenicsociety.org/</u>
- The CSA Buyers Guide provides an extensive listing of organizations and firms involved in cryogenics <u>https://csabg.org/</u>
- International Union for Vacuum Science, Technique and Applications <u>https://iuvsta.org/</u>

A short course on Cryogenic Engineering including slides and video presentations, may be found here: <u>https://uspas.fnal.gov/materials/21onlineSBU/onlineSBU-Cryogenics.shtml</u>

A short course from CERN on Vacuum for Particle Accelerators may be found here: <u>https://cas.web.cern.ch/schools/glumslov-2017</u>

Procurement information can typically be found on Large Facility websites or via the ILO

Summary

- Cryogenic and vacuum systems play important roles in Big Science Facilities
- Total estimated needs in these areas from participating facilities in the future is on the order of 100 MEuros
- Needs in these areas may be divided into very specialized equipment and more standard industrial equipment
- The latter category frequently consitutes the bulk of purchases needed to maintain operating facilities
- Operating facilites frequently have long lifetimes and thus ongoing procurement needs
- There are many resources available to learn about the procurements associated with cryogenic and vacuum systems.