TISICS

BSBF Conference TISICS Overview October 2022

TISICS is pioneering lighter and greener, aircraft and spacecraft components with world leading metal composite and net-shape manufacture technologies.

Most significant advancement in forms of transport which result in significantly improved environmental footprint.

Pitch@Palace 11.0
2019 Finalist

TISICS has a unique composite technology

30% - 70% component system weight savings with TISICS composites

WILL CARRY 5,000Kg 11,000 pounds

TISICS mission: Transform metals for a greener, brighter future

ounce

Technology Development

Technology Heritage

TISICS and its predecessors have maintained UK independent access to silicon carbide fibre since the 1980s ensuring European access advanced light weight components without ITAR restrictions.

Technology & Capability Investment

£ 3.5m

Total capital investment since 2005

£ 7.99m

Total technology & process R&D

£ 14.m

Revenue to date

£ 1.5m

Management equity

Vertically Integrated Capabilities

World unique integrated composite manufacture

- One of two commercial silicon carbide fibre suppliers worldwide
- Fibre competitor based in USA and subject to ITAR/EAR controls
- Only commercial supplier worldwide with integrated fibre and composite capability

Certifications

SiC Production

Cleanrooms

Processing

Furnaces & Vacuum CNC: Lathes, Mills, **Wire Eroder**

CAD, FEA

Inspection, **Analysis**

Tensile, compression, fatigue testing & NDE

Technology Overview

TECHNOLOGY

COMPOSITE MANUFACTURE

Near net-shape process minimises welding, joining and final machining

info@tisics.co.uk

Technology Overview - Material Properties

Material – Titanium and Titanium Matrix Composite

- Strength & E-modulus of TMC approx. 2x conventional titanium in longitudinal direction
- Aluminium 6061 matrix composite (AIMC) has comparable strength and higher stiffness than conventional titanium 6-4 at ~30% lower density

Technology Overview - Material Properties

Material – Aluminium and Aluminium Matrix Composite

- Strength of AIMC approx. 4x conventional aluminium in longitudinal direction
- E-modulus of AIMC increased by approx. 70% compared to conventional aluminium

Pressure vessel development - Small Science to Big Science

Research and Development

funded by TISICS research grants and customers

SURREY

Innovate UK

ITI Spherical

tank

2012

NEO Sat tank

Hydrogen

peroxide tank

Robotic fabrication development

Development supported by customers

Diffusion-Bonding Process – Production Steps for Net-shape Tanks and COPV Liner (General)

Raw material:

- Round bar (inlet/outlet), machined to required geometry
- Low cost alloy sheet or foil for hemisphere and cylindrical shells
- Low cost alloy plate/bar machined with minimal waste for attachment devices and diaphragm mounting features

Net-shape forming:

- Simple lay-up and assembly of sub-elements into final tooling
- Encapsulation to seal inner and outer tooling around tank materials
- Diffusion-bonding (Hot Isostatic Pressing, HIP)
- Mould removal to produce net-shape tank
- NDI (US-inspection) on tank assembly for structural integrity

Flexible Tooling Technology can be adapted and optimised for bespoke Variants in a Family of Tanks

© Copyright 2022 TISICS Ltd. COMMERCIAL IN CONFIDENCE Slide 9

Small Propellant Tank incl. Novel Diaphragm Attachment

Bespoke Tanks optimised for Volume within Geometric Constraints for a NanoSAT and CubeSat Platforms

- Combined twin chemical and pressurisation tank with integral mounting flange
- Novel propellant expulsion attachment integral to base port hemisphere
 - Reducing assembly time and increasing reliability as no bolted attachment feature
 - > Reducing stresses in critical clamping area
 - Reduced mass
- Thin-walled tanks with diffusion-bonded weld feature
- Maximised propellant volume due to integral gas manifold (eliminates the orbital arc tube welds)
- Port configuration can be located to customer needs, e.g. side walls, etc.
- Pressure and propellant expulsion tested

Diffusionbonded Weld Feature

Internal and External Features

Diffusion-bonded Integral Joints and Mounting Devices:

- Diaphragm internal attachment feature
- External equatorial / pedestal / polar mounting devices
 - All joints and attachment features can be tailored to customer needs
- PMD & PMD vane mount
 - Integral diffusion-bonded weld feature
 - Elimination of complex EB-welds

SoA vs. Diffusion-Bonding

State-of-the Art Forging / Machining vs. Diffusion-Bonding Process

Conventional Process

Disruptive Process

Forging

Forging: Typical duration 9-12 month incl. heat treatment

Tooling: **Expensive** <u>individual</u> tooling required for each size of part

Facilities: Highly specialised facilities

Cost: Process suited to high volumes, typical volumes required

to produce satellite tanks are low; fluctuating raw material costs have a significant impact; high cost due to high wastage of material e.g. 30-50 mm forging down to

0.6-1.0 mm shell thickness

Diffusion-bonding

Net-shape: Typical duration **4-5 month**; significant less than

forging/machining (12-18 month)

Tooling: Low-cost re-usable flexible tooling

Facilities: Limited facilities

Cost: Process suited to high & low volumes, typical volumes

required to produce satellite tanks are low; fluctuating raw material costs have not a significant impact as essentially no wastage of material due to net-shape

forming

Machining

Machining: Typical duration 3-6 month

Tooling: **Expensive** <u>individual</u> tooling required for each

part; typically more than one piece of tooling per part; needs two sets of (vacuum) tooling to achieve thin wall

thickness with required accuracy and tolerance

Facilities: Limited facilities capable of achieving high tolerance on

thin-walled components; expertise is a critical aspect of producing the shell components

Pressure vessel development - Small Science to Big Science

Research and Development

funded by TISICS research grants and customers

SURREY

Innovate UK

NEO Sat tank 2012-2015

Hydrogen peroxide tank 2016-2018

SURREY Innovate UK

Twin tank 2016-2018

ThalesAlenia UK SPACE AGENCY

Robotic fabrication development

Development supported by customers

Closing Thoughts

SME - Big Science Communication

- Interaction has been extremely valuable. Perhaps the best route to adoption of new technology.
- Significant challenge in communicating problems and solutions.
- Networking is crucial and does work, but how many opportunities are missed?
- Raising awareness of technology to interested parties is a challenge as we do not know their needs and they do not know our capability.

Transforming metals for a greener, brighter future

Come talk to us

+44 (0) 1252 516678

22 Invincible Road, Farnborough, GU14 7QU, UK

Dr. Michael Rix

Senior Engineer mrix@tisics.co.uk

Mob: +44 782 8973 962