

Introduction to Big Science Applications of Superconductivity and Superconducting Magnets

Andrzej SIEMKO, CERN, Technology Department Big Science Business Forum 2022, Granada, Spain

Outline

- Clean energy: can the superconducting technologies contribute more?
- Superconductivity in the healthcare
- Superconductivity for the discovery potential of science
- Final Remarks

ITER - the most ambitious clean energy project in the world

ITER Magnet System

- The ITER magnet system is made up of
- 18 Nb₃Sn Toroidal Field (TF) Coils,
- a 6-module Nb₃Sn Central Solenoid (CS),
- 6 Nb-Ti Poloidal Field (PF) Coils,
- 9 Nb-Ti pairs of Correction Coils (CCs).

- The ITER magnet system, with a combined stored magnetic energy of 51 GJ is the largest superconducting magnet system ever built
- The magnets will produce the magnetic fields that will initiate, confine, shape and control the ITER plasma
- ITER uses Nb-Ti and Nb₃Sn cablein-conduit conductors
- The Nb₃Sn strands are used in ITER's toroidal field and central solenoid magnet systems

Post-ITER projects – a new technological milestone towards compact fusion reactors

- Though the breakthrough in fusion energy generation (Q>1) remains yet undemonstrated, More than twenty private and government-funded consortia in the US, Europe, China and Australia are currently investing in efforts to build commercial compact fusion reactors
- Some of the consortia are building new, very powerful magnets, which will be a crucial component in a compact nuclear fusion Tokamak reactor

Post-ITER projects – a new technological milestone towards compact fusion reactors

- The SPARC is hoping that its prototype, like ITER, will produce 10 times the energy it consumes (Q=10)
- The fusion power density produced in a tokamak is proportional to its TF magnetic field strength to the fourth power.
- Much higher magnetic fields make it possible to obtain the same energy in a much smaller size of Tokamak reactor.

Superconducting technologies in wind power generation

- SC technologies can contribute to the wind power generation
- Renewables: solar, wind, biomass, waste, geothermal and small hydro
 - 2019: generated 13.4% of global electricity vs 5.9% in 2009
 - 2022 expectation: add 320 GW (8% growth)
- Wind power added capacity:
 - 487 GW capacity in 10 years (2009-2018)
 - 2020: >100 GW incl. 71.6 GW in China and 14 GW in USA
- Targets: add 800 GW renewable capacity by 2030, total investment worldwide: >€1 trillion

Superconducting technologies in wind power generation

- Advantages of superconducting wind generators
 - Main advantage is higher field in air gap vs traditional technologies limited by magnetization of core material
 - Higher efficiency
 - Reduced size and weight of the generator and turbine
 - High torque density
 - Scalability to higher power
 - Eliminates (LTS) or reduces (HTS) use of rare earth elements
- Running LTS wind turbine demonstrators show that commercially competitive offshore units are over 15 MW of nominal turbine power

Superconducting technologies in wind power generation

- HTS generators for wind turbines are so far technology demonstrators
 - Not optimized for volume production, system cost, manufacturability, reliability, etc.
- The EU-funded EcoSwing project (Energy Cost Optimization using Superconducting Wind Generators) successfully demonstrated world's first HTS low-cost and lightweight generator on a large-scale commercial wind turbine
 - EcoSwing generator and power converter reached target range +3 MW
 - Core technologies, namely the superconducting rotor coils and the cryogenic cryocooling technology showed stable and reliable system operation and great performance and reliability

HL-LHC superconducting power transmission lines

- Innovative multi-circuits system
 developed at CERN to supply current
 to HL-LHC Interaction Region magnets
- Lengths in excess of 100 m
- MgB2 cable cooled by forced flow of GHe at temperatures in the 4.5-17 K range, carrying up to ~129 kA @ 25 K
- First industrial production of MgB2 wires (project needs: 280 + 1050 km)

Superconducting HVDC high-power energy transmission

- Bulk power transmission over several hundred kilometers is necessary to bring the electricity produced by remote renewable energy farms to the consumption centers
- The Institute for Advanced Sustainability Studies (IASS), Potsdam together with academia and industry partners have developed a 3-gigawatt-class (320kV DC, 10kA) MgB2 superconducting cable for very high-power transmission and demonstrated competitiveness of this technology compared to conventional cables

The MedAustron proton/carbon-ion synchrotron was constructed in collaboration with CERN, the TERA Foundation, INFN and the CNAO Foundation, with help from PSI. (Image: MedAustron)

The CERN Next Ion Medical Machine Study (NIMMS)

- Basic requirements of the next generation ion therapy accelerator:
 - Operation with multiple ions (protons, helium, carbon, oxygen) for therapy and research
 - Lower cost and dimensions, compared to present
 - Faster dose delivery with higher beam intensity and new delivery schemes (FLASH)
 - A gantry device to precisely deliver the dose to the tumor
- Enabling technology: curved LTS or HTS CCT (Canted Cosine Theta) dipole and combined function magnets

SIGRUM - New Concept of Rotating Compact Gantry for C⁶⁺ Therapy

- Main characteristics of SIGRUM project, a Superconducting Ion Gantry with Riboni's Unconventional Mechanics:
 - Beam orbit radius 6.37 m
 - Length ~16 m
 - Weight <30 tons
 - Momentum acceptance 1%
 - Reduced complexity of the main magnet system for maximum reliability
 - Two cryo-assemblies: 2x22.5°, 3x 45°
 - $B_{nom} = 3 T$
 - $G_{nom} = 2 \text{ T/m}$ (Combined function)

Novel GaToroid Gantry Concept

A GaToroid for protons

(the smallest possible size)

Number of angles	16	
Peak magnetic field	8 T	
Stored Energy	30 MJ	
Coil dimension	1.5 m x 1 m	
Torus dimension	1.5 m x 3 m	
Bore size	0.8 m	
Vector Magnet position	4.5 m	
Operating temperature	4.2 K	
Operating current	1.8 kA	
Estimated total mass	25 tons	

A GaToroid for ions

(the largest possible size)

GaToroid: Technology Development Towards a Feasibility **Demonstrator**

Stainless Steel dummy winding with 3D printed spacers

A breakthrough in high-resolution MRI

- Project Iseult: the most powerful full-body MRI in the world!
 - Magnetic field of 11.7 Tesla against 1.5 to 3 found today in hospitals. An unprecedented technological achievement by scientists from the Atomic Energy Commission (CEA), the result of twenty years of research
 - Iseult paves the way for high-resolution full-body MRI
 - ...and promises a leap forward in knowledge about the human brain

Superconducting RF cavities for future collider projects - FCC-ee collider

- FCC-ee SRF needs: focus on surface losses and HOM loading:
 - RF systems and associated cryogenics represent 50% of the FCC-ee electricity consumption.
 - A factor 2 in Q will reduce the cryogenic consumption by 50% (for ttbar from 47.5 MW to 23.7 MW)

Machine part	Frequency [MHz]	Cells/cavity	Gradient [MV/m]	# cavities
Booster	800	5	6 - 25	496
Main ring (Z)	400	1	6	56
Main ring (W, H)	400	2	12	280
Main ring (ttbar)	800	5	24	400

Courtesy of W. Venturini and F. Gerigk

A new future for SRF technology

Goal: insert qubit into SRF cavity, to enhance coherence time thanks to very high Q of SRF cavities

SQMS devices. computing testbeds

Detector magnet projects for existing & future colliders, non-colliders and space experiments

- Strong industrial expertise and capabilities for building superconducting detector magnets are available in industry, provided that the needed conductor is available
- Many future superconducting detector magnets are under developmernt, with strong demand for suitable conductor types, especially aluminum-stabilized Nb-Ti/Cu conductor technology
 - Industrial production capabilities of aluminum-stabilized Nb-Ti/Cu conductor is at present an issue

Final remarks

Big Science provides tools to other fields: medicine/climate/energy/...

It always remains a good investment for the future of mankind