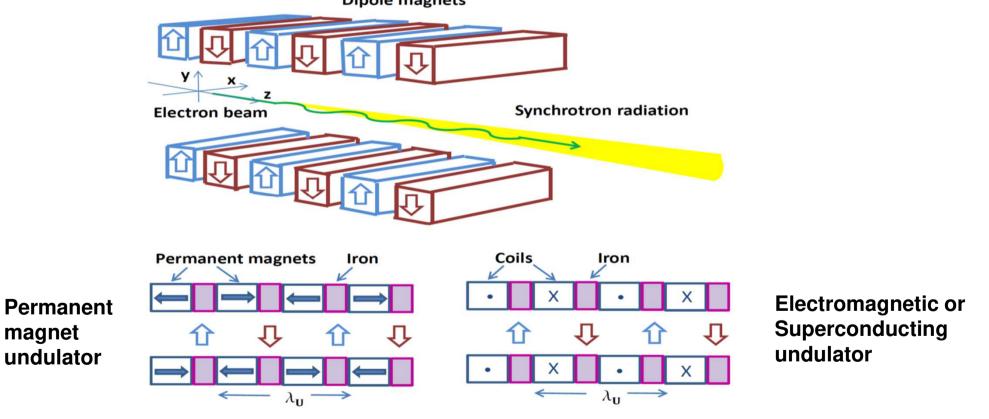
Overview of tenders in the area of SCU development from European XFEL

Sara Casalbuoni European XFEL

BSBF2022, Granada, 6 October 2022

Sara Casalbuoni, BSBF2022, Granada, 6 October 2022

Outline



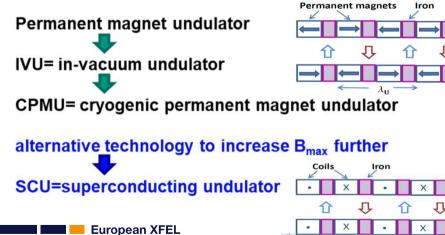
- EuXFEL undulator lines
 - Undulators
 - Intersections
- SCU developments

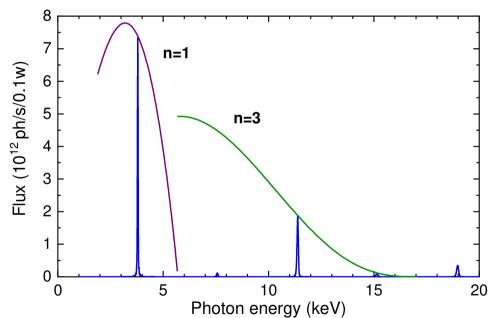
Introduction

Undulators are periodic structures made by sequences of dipole magnets and are used in synchrotron light sources and in free electron lasers to increase the photon flux produced in a narrow cone

European XFEL

S. Casalbuoni, Supercond. Sci. Technol. 32 (2019) 023001


Introduction


To increase the photon beam energy with the same electron beam energy it is necessary to reduce the period length $\lambda_U \Rightarrow$ short period undulators

$$\lambda = \frac{\lambda_U}{2 n \gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right) \quad K = \frac{e}{2\pi mc} B_0 \lambda_U = 0.9336 B_0[T] \lambda_U[cm]$$

To increase the tunability range of the photon energy

Developments to increase B_{max}

The position of the harmonics is shifted by changing the on axis peak magnetic field B_0

Introduction

- In a storage ring undulators are tipically 1-5 m long
- In FELs the total length required is much longer: about 100 m.

The dimension of the single units is similar as in storage rings: at European XFEL undulator length is 5 m.

There are mainly 3 reasons:

- Easier to handle: manage support structures to keep the forces and magnetic field measurement setups
- Space between undulators is needed for quadrupoles to periodically focus of the electron beam, keeping its dimensions small enough for the FEL process to occur
- Space between undulators is also used to place electron beam diagnostics

5

Hybrid permanent magnet undulators at European XFEL

Table 1

Specifications for the undulator segments of the EuXFEL.

The operational ranges for gap and K parameter match user requirements (Altarelli *et al.*, 2006). Only inside are all specifications strictly fulfilled. Magnetic tuning was always performed at the tuning gap to limit gap dependence of magnetic properties, see discussion of Fig. 4.

	SASE1 / SASE2	SASE3
Undulator type	U40	U68
Period length (mm)	40	68
Segment length (m)	5	5
Total number of poles	248	146
Magnetically active poles	246	144
Number of ending poles	3	3
Operational gap range (mm)	10-20	10-25
Operational K-parameter range	1.65-3.9	4-9
Maximum peak field @ 10 mm (T)	1.11	1.66
Tuning gap (mm)	14	16
Maximum gap (mm)	200	200
Maximum phase jitter (°)	≤ 8	≤ 8
Maximum 1st B_{y} field integral (T mm)	± 0.15	± 0.15
Maximum 1st B_x field integral (T mm)	± 0.15	± 0.15
RMS of 2nd B_y integral (T mm ²)	<100	<210
RMS of 2nd B_x integral (T mm ²)	<100	<100
Radiation wavelength range (nm)	0.05-0.4	0.4-5.2
Number of segments in system	35	21
System length (m)	205	121

S. Abeghyan et al., J. Synchrotron Rad. (2019). 26, 302–310

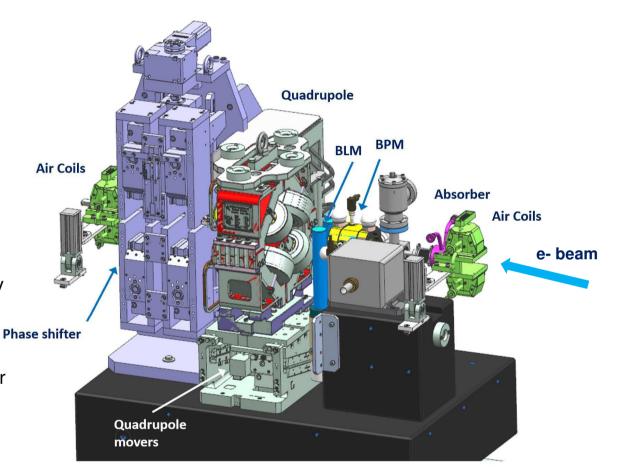
Typical undulator cell at European XFEL

Undulator Cell Servo Motor **AIMg Girder** 50 mm x 100 mm e- beam Servo Motor **European XFEL planar undulators** for SASE1/2/3 are hybrid permanent magnet undulators using NdFeB and soft iron poles made of cobalt iron The beam vacuum chamber is made of extruded aluminum-magnesium and has an elliptical beam stay clear of **Undulator 5 m** 15 mm (horizontal) and 8.6 mm (vertical) Intersection 1.1 m

European XFEL

Intersection at European XFEL

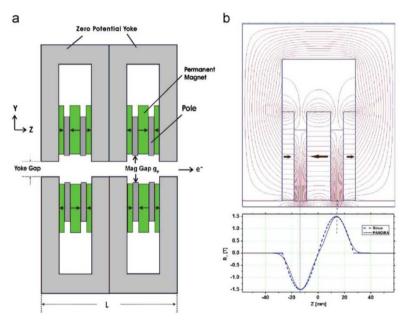
Air coils: compensate vertical and horizontal field integrals to specified values


BPM: cavity based BPM with sub-µm resolution

Quadrupoles: periodically focus the electron beam, keeping its dimensions small enough for the FEL process to occur. The quadrupoles can be steered (quadrupole movers) vertically and horizontally by ±1.5 mm with an accuracy of ±1 μm BPMs + quadrupoles: BBA to define a straight trajectory within the electron beam dimensions of about 30 μm along the undulator line of about 200 m

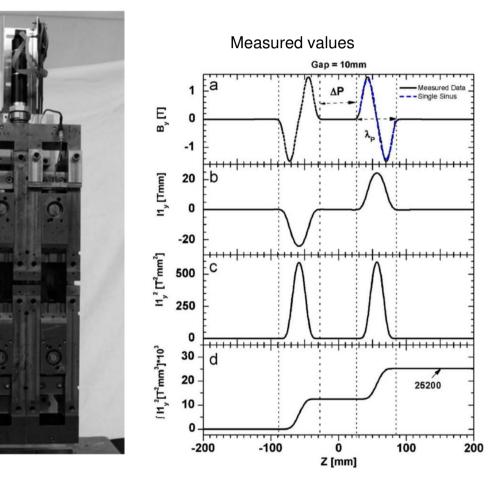
BLM: to reduce the radioactivation of the accelerator components

Absorber: protect downstream undulators from synchrotron radiation of upstream ones


8

Overview of tenders in the area of SCU development from European XFEL

Sara Casalbuoni, BSBF2022, Granada, 6 October 2022


Phase shifter

The phase shifter must compensate the phase advance of the emitted photons with respect to the electrons in the intersection of length L_s at all undulator K values.

H. H. Lu, Y. Li, J. Pflueger, NIMA 605 (2009) 399–408

magnets NdFeB poles iron cobalt Phase shifter of European XFEL

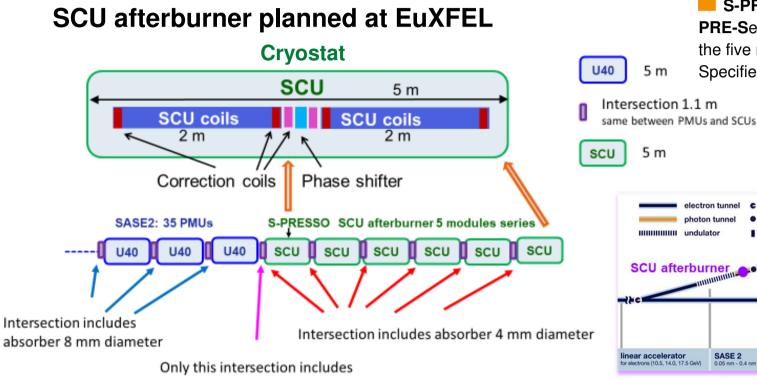
9

lectron tunnel

SASE 2

0.05 nm - 0.4 nm

photon tunnel


electron switch

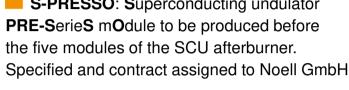
electron bend

electron dump

SASE 1

0.05 nm - 0.4 nm

RF valve increasing by few cm the length of the intersection


> The cooling scheme of S-PRESSO and of the afterburner modules will be based on cryocoolers as from the KIT/Noell design

European XFEL

S-PRESSO: Superconducting undulator

11111111

SASE 3

HED High Energy Density Science

MID Materials Imaging

FXE Ferntosecond X-ray Experime

SCS S

S. Casalbuoni et al., SRI2021

Components for SCU afterburner at EuXFEL

- Part of the SCU module:
 - Cryocoolers
 - Power supplies
 - Correctors and phase shifter: ±10 A, 10 V
 - ► Main coils: 400-1000 A, 10-20 V
 - as small as possible to fit in the tunnel
 - Vacuum pumps
 - CAM movers

- Elements for intersections:
 - Quadrupoles
 - Quadrupole movers
 - Air coils (correctors)
 - Granite stone, alignment mechanism
 - Absorbers
 - BPMs
 - BLMs
 - Phase shifters
 - RF bellows
 - RF valve

Overview of tenders in the area of SCU development from European XFEL

Sara Casalbuoni, BSBF2022, Granada, 6 October 2022

Thank you for your attention!

European XFEL