

Superconducting Magnets for FAIR

BSBF 2022, Granada (Spain), 6th of October Christian Roux

FAIR – experimental program

NUSTAR

Nuclear Structure, Astrophysics and Reactions: Stars and nuclei (850 scientists)

CBM

Compressed Baryonic Matter: Inside a neutron star (500 scientists)

PANDA

Antiproton-Annihilation at Darmstadt: Hadron physics with antiprotons (500 scientists)

APPA

Atomic, Plasma Physics and Applications: From atoms to planets to cancer research (720 scientists)

FAIR

Experimental Setups four main pillars

SIS100 heavy-ion synchrotron high intensity primary beams

Production targets

- exotic nuclei
- anti-protons

25 accelerator and experimental structures, labs + operation and supply structures

SIS100: underground ring^{tor for exotic nuclei} with a circumference of approx. 1,100 m

Around 150,000 m² of total area

FAIR – superconducting magnet's point of view

SIS100

- 108 dipoles
- 83 quadrupole doublets

Super-FRS

- 24 dipoles
- 33 multiplets with up to 9 magnets

experimental setups CBM, APPA, PANDA, NUSTAR

under consideration

- collector ring
- beam lines

SIS100 – dipole series

SIS100 – quadrupole units & doublets

Super-FRS

technology	 (mostly) superferric bath/thermosiphon cooling (auasi-)dc 	 series production ongoing testing at CERN/Geneva
dimensions	 large aperture warm bore (380 mm) up to 70 t 	long
current	< 300 A	
# of magnets	32 multiplets (with up to 9 magnets) 24 dipoles	

Super-FRS – Needs for Energy Buncher Magnets FAR == 1

		procurement	t figures range 0.08 T - 1.6 T	
557			scope	three dipoles
			design status	spec by end of 2022
			time line	2025 assumed
design	• superferric, racetre	nck		
	 thermosiphon cool self protecting 	ing		
dimensions	• large aperture: 50	0 mm × 140 mm		
	• 75 t			
field strength	1.6 T			
current	<i>< 300</i> A			

APPA: final focusing quadrupoles

FAIR GmbH | GSI GmbH

procurement figures

scopefour quadrupolesdesign statusspec availabletime lineafter budget decision

Table, two

CBM: detector magnet

PANDA: detector magnet

procurement figures scope single magnet, CLs (HTS), control dewar design status spec available 1 ò time line latest 2027 3 solenoid cold mass

antiproton – proton collisions

design	• instrumented yoke, solenoid
	thermosiphon
	• (fully) self protecting
dimensions	 huge aperture: d = 1.8 m
	• ~ 360 t
field strength	2 T
current	5 kA

Under consideration / strategic projects

HTS cables

- next-gen accelerator magnet
- power transfer

HTS coil replacement energy saving compared to NC beam line magnets

Collector ring re-consideration of SC design

procurement needs: superconducting magnets for FAIR

	time	ime status		# of	
	line	model	spec	magnets	J
SIS100 units		Q4/22 (in revision)	Q4/22 (in revision)	3	
CBM	dese	ok	10/22	1	
APPA		ok	ok	4	
Super-FRS EB dipoles	2025	Q4/22	Q4/22	3	
PANDA	2027	ok	ok	1	
			•		
Collector Ring	Ę	concept studies		26 (+ 29)	
Beam line upgrade	d-tei	concept studies		tbd	
HTS cable	Ш.	concept studies		n/a	

thank you very much

CARGON MECHANNEL

Our current procurements

Additional slides

It's easy to do business with FAIR:

- We buy the vast majority of our needs in open competition
- We have no principle of *juste retour*: the most competitive offer wins, regardless of nationality or EU membership.

Here's what you need to do:

- Present your portfolio and references to the FAIR/GSI team or send them to our industry contact officer: <u>s.utermann@gsi.de</u>.
- Check our website for upcoming procurements
- Please contact your country's industry liaison officer. It is their job to advocate for you.
- Reach out to other companies in your country. Consider consortia.
- If you are based in one of our shareholder countries: check the tenders of your country's shareholder (see the BSBF procurement handbook)

In addition, if you are in a shareholder country,

- Please contact your country's industry liaison officer. It is their job to advocate for you.
- Reach out to other companies in your country. Consider consortia.
- Please check the tenders of your country's shareholder (see the BSBF procurement handbook):

Country	Shareholder	Tender site
Finland (in consortium with Sweden)	Vetenskapsrådet	www.vr.se
France	CEA and CNRS	www.marches-publics.gouv.fr
Germany	GSI GmbH	www.dtvp.de
India	Bose Institute	www.thetenders.com/all-India-Tenders
Poland	Jagiellonian University	opentender.eu/pl
Romania	Ministry of Research and Innovation	anap.gov.ro
Slovenia	Ministry of Education, Science and Sport	opentender.eu/si
Sweden (in consortium with Finland)	Vetenskapsrådet	www.vr.se

Shareholders worldwide

Shareholders Finland France Germany India Poland Romania Russia Sweden Slowenia Associated United Kingdom Aspirant Czech Republic

SIS100

type and specs

iron dominated – window frame Nuclotron NbTi cable

forced flow two-phase He

SUPER-FRS

Multiplets

short multiplets (8 pcs)

pre separator standard: quadrupole + sextupole 2.5 m, 25 tons

multiplets – common specs (cold) iron dominated common helium bath warm beam pipe (d = 380 mm) individual powering (I < 300 A)

long multiplets (25 pcs) main separator 14 configs max: 9 magnets, 7 m, 60 tons

FoS LM (front) FoS SM (back)

Thermosiphon

CBM

Wire

Cable #	Length,	Height	Cu/nonCu	Critical	RRR	Number of	Diameter of	Yield	Twist
	km	Width,		current at 8		filaments	filaments,	strength,	pitch,
		mm		T, A			um	MPa	mm
1-c3-37-	5.2	2.02	6.994	>764	217	713	38	115	39
2-18		3.25							
1-c3-37-	5.4	2.02	6.610	>820	223	713	39	145	39
3-18		3.25							
1-c3-37-	5.5	2.02	6.825	>786	214	713	38	122	38
4-18		3.25							
1-c3-37-	5.4	2.02	6.704	>800	209	713	38	138	38
5-18		3.25							
1-c3-37-	5.5	2.02	6.987	>779	200	713	38	122	38
6-18		3.25							
1-c3-37-	5.5	2.02	6.705	>799	208	713	38	123	38
7-18		3.25							

Table 2. The main parameters of the manufactured SC wires

Wire

Main parameters of the CBM magnet				
Magnetic field integral along 1 m about the center, T*m	1.02			
Maximal magnetic field on the coils, T	3.6			
Inner diameter of the SC winding, m				
Vertical distance between the poles, m	1.47			
Operating current, A	666			
Number of turns per coil	1716			
Total current, MA	1.143			
Number of layers	52			
Stored energy at test current, MJ	5.0			
Coils cold mass, kg	3600			
Operating temperature, K	4.5			
Inductance at operating current, H				
Vertical force acting on the coils toward the iron yoke, MN^*				
Total weight of the yoke, kg	150			

Coil

Table 1 Superconducting coil parameters		
Coils parameters	Values	
Inner cold diameter of the winding, mm	1396	
Cross section cold sizes of the winding:		
height, mm	132	
radial thickness, mm	157	
Number of turns in one coil (33x52)	1716	
Number of layers in one coil	52	
Interlayer insulation, mm	0.3	
Operating current Io, A	666 ²	
Test current, Io*1.05, A	700	
Magnetic field on the coil Bmax, T	3.6	
Io/Ic ratio along the load line, %	~50	
Io/Ic at fixed B, %	20	
Helium temperature, K	4.5	
Temperature of current sharing, K	6.8	
Stored energy of the magnet, MJ	4.9	
Cold mass of one coil, kg	~ 1800	
Cold mass of one coil SC winding, kg	800	
Inductance of the magnet at operating current, H	~22.1	
E/M ratio for two windings, kJ/kg	3.1	
Mutual inductance between the coils, H	0.21	
Vertical force on one coil toward the yoke, MN	3.0	

ig. 8. The superconducting coil after the first impregnation with epoxy resin. The green part is an ascrtion of G-10 material.

APPA

Quadrupole Specs

Name of magnet		FFS super-conducting quadrupoles for HED@FAIR
Design		Cos-0 type quadrupole Rutherford-type sc cable
operating mode		DC, no ramping
Quantity of magnets		4
coil inner diameter	mm	260
distance between quadrupole centres of two nearby quadrupoles	m	2,5
Effect. (magn.) length	m	2
integral of field gradient	т	66
central gradient (G0)	T/m	33
region of a good field quality (r0)	mm	110
lowest harmonics (6-th and 10-th), 6- th integral field harmonics		< ±2×10 ⁻⁴
operating temperature	К	4,4
temperature margin	К	< 1
compatible with a warm ion beam pipe		
Beam pipe interface		CF 200 rotable flange

Overview

- 4 large-aperture (inner diameter: 260 mm) high-gradient (integral field gradient: 66T) superconducting $\cos\theta$ quadrupoles
- 1280 m Rutherford type sc cable winded in 2-layer coils
- Collars and iron yoke (approx. 8 t), liquid He cooled
- Pressure vessel according AD2000
- Thermal shield and cryostat
- Incl. alignment feed and stand
- Existing design and construction drawings

Cable

Superconducting alloy	NbTi
Titanium percentage, %	50 ± 4
Matrix material	copper
Wire diameter, mm	0.85+0.03
Filament diameter, µm	6
Filling factor	0.42+-0.02
Twist pitch, mm	10+-2
Residual Resistance Ratio (RRR) of matrix	≥70
Critical current at B = 5 T, T = 4.23 K, A	600 ± 50
Critical current density at B = 5 T, T = 4.23 K, kA/mm2	2.5 ± 0.1
	Polyimide film (3x)

0,025mm)

Fiberglass with an adhesive layer of 0,1

Application

Function

4 super conducting (33 T/m) large aperture (260 mm) quadrupoles

Key component for the HIHEX and LAPLAS experiments. The energy that can be deposited in the target with the ion beam is a key parameter for HED experiments and therefore the achievable ion beam intensity and focal spot size are of utmost importance. In order to maximize the energy deposition, it is necessary to use a heavy ion beam with a low charge state and very high intensity, which in turn requires focussing magnets with a very strong magnetic field together with large apertures for focusing the beam to a spot size of about 1 mm in diameter.

cryo supply and current leads connection

PANDA

Overview

Panda Cable

Status of Production

- SC strand production started at VNIINM Bochvar
- Extrusion tests at SARKO, tools and heater from BINP
- Contract for Rutherford cable with VNIIKP
- Pure Aluminum available, production of 9 mm wire with VNIINM Bochvar
- Production was to be completed in 2022

SC Strands

- 1600m sample tested
- All parameters to specs
- High quality of conductor shown by x2 RRR and n

Aluminum Extrusion

- Wire production optimal at 350 – 380°C: RRR>10³
- First 1000m A95 Cu cable
- SC 80m sample A995
- PANDA conductor 8km

			Certified		1 C2 10 1 21/1	
P	arameter	Unit	Value	Tolerance	> 1400 m	
D	iameter filament	μm	< 20	-		
D	iameter strand	mm	1.400	± 0.005		
С	u/SC ratio	-	.50/.50	± 0.05	/0.5187	
Ci (a	ritical current at 4.2 K, 5 T)	А	> 2160	-	2220	
n	-value (at 4.2 K, 5 T)	-	> 30	-	71*	
C	onductor RRR	-	> 100	-	196	
Т	wist direction	-	left	-	left	
Т	wist pitch	mm	25	± 5	22	

View from top

Panda objectives

Spectroscopy

- New narrow XYZ:
 - Search for partners
 - Measure lineshapes
- Production of exotic QCD states:

Glueballs & hybrids of all quantum numbers

Nucleon Structure

- Generalized parton distributions: Orbital angular momentum
- Drell Yan: *Transverse structure,* valence anti-quarks
- Time-like form factors: Low and high E, e⁺e⁻ and μ⁺μ⁻ Unphysical region: e⁺e⁻π⁰

Bound States of Strong Interaction

Strangeness

- Hyperon spectroscopy: excited states largely unknown
- Hyperon polarisation: accessible by weak decay, parity and CP observables

Nuclear Hadron Physics

- Hypernuclear physics:
 - Hyperatoms
 - Double Λ hypernuclei
 - YN and YY interactions
- Hadrons in nuclei:

Charm and strangeness in the medium

